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Quantum error correction and topological codes

qubits are in the j00æ or j11æ state, the measurement qubit will report a
string of identical values. If the data qubits are in the j01æ or j10æ state,
the measurement qubit will report alternating values, as measurement
is QND. Single data bit-flip errors make the measurement outcomes
switch between these two patterns. For example, if the measurement
outcomes for three cycles are 0, 0 and 1, this indicates a change from
the identical to the alternating pattern in the last measurement, and
hence a detection event. Explicitly, with mt the measurement qubit
outcome at cycle t and › the exclusive OR (XOR) operator, for each of
the two patterns we have bt 5 mt21 › mt 5 0 or 1. A detection event at
cycle t is then identified when Dt 5 bt21 › bt 5 1.

We use minimum-weight perfect matching23–25 to decode to physical
errors, based on the pattern of detection events and an error model for the
system. Intuitively, such matching connects detection events in pairs or to
the boundary using the shortest total weighted path length. It is important
to note that errors can lead to detection event pairs that span multiple
cycles, necessitating the need for multi-round analysis as opposed to
round-by-round (see Supplementary Information for details).

To study the ability of our device to preserve quantum states, we
initialized the data qubits into a Greenberger–Horne–Zeilinger (GHZ)
state, 000j iz 111j ið Þ

! ffiffiffi
2
p# $

, and applied two rounds of the repetition
code (Fig. 3). The algorithm is shown in Fig. 3a. Using quantum state
tomography we measured the input density matrix r and find a GHZ
state with fidelity Tr(ridealr) of 82%, above the threshold of 50% for
genuine entanglement26. After two repetition code cycles, we use tomo-
graphy to construct the density matrices for each pattern of detection

events. We find a state fidelity of 78% in the case of no detection events,
indicating a retention of genuine quantum entanglement. In the case of
two detection events, which indicate a likely data qubit error in the first
cycle, we find elements away from the ideal positions. By applying the
recovery operation in post-processing (a single bit-flip on the blue data
qubit) we can restore the state. Energy relaxation, the most likely cause
of the detected bit-flip error, induces both bit-flip and phase-flip errors.
The bit-flip error is corrected and the diagonal terms are preserved, but
any phase-flip error remains uncorrected, reducing the off-diagonal
terms and fidelity to 59%. We note that genuine entanglement is pre-
served. Conditional tomography for every configuration can be found
in Supplementary Information.

The data in Fig. 3 clearly show that the one-dimensional repetition
code algorithm does not necessarily destroy the quantum nature of the
state. It allows for preserving the quantum state in the case of no errors,
and correcting bit-flip errors otherwise. This preservation is achieved
purely through error detection and classical post-processing, like for the
full surface code, avoiding the need for dynamic feedback with quantum
gates. For the remainder, we investigate the logical basis states individu-
ally, as tomographic reconstruction cannot be done fault-tolerantly.

We now address the critical question of how well our implementa-
tion of the repetition code protects logical states over many cycles. The
process flow is illustrated in Fig. 4a. We start by initializing the data
qubits in either of the logical basis states: j0Læ 5 j0..0æ or j1Læ 5 j1..1æ.
We then run the repetition code algorithm for k cycles, and finish by
measuring the state of all data qubits. We repeat this 90,000 times to
gather statistics. The classical measurement results are converted into
detection events, which are processed using minimum-weight perfect
matching to generate corrections (see Supplementary Information).
These corrections are then applied to the measured data qubit output
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Figure 1 | Repetition code: device and algorithm. a, The repetition code is a
one-dimensional (1D) variant of the surface code, and is able to protect against X̂
(bit-flip) errors. The code is implemented using an alternating pattern of data
and measurement qubits. b, Optical micrograph of the superconducting
quantum device, consisting of nine Xmon21 transmon qubits with individual
control and measurement, with a nearest-neighbour coupling scheme. c, The
repetition code algorithm uses repeated entangling and measurement operations
which detect bit-flips, using the parity scheme on the right. Using the output
from the measurement qubits during the repetition code for error detection,
the initial state can be recovered by removing physical errors in software.
Measurement qubits are initialized into the | 0æ state and need no reinitialization
as measurement is QND.
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Figure 2 | Error propagation and identification. a, The quantum circuit for
three cycles of the repetition code, and examples of errors. Errors propagate
horizontally in time, and vertically through entangling gates. Different errors
lead to different detection patterns: an error on a measurement qubit (gold) is
detected in two subsequent rounds. Data qubit errors (purple, red, blue) are
detected on neighbouring measurement qubits in the same or next cycle. Data
errors after the last round (blue) are detected by constructing the final set
of ẐẐ eigenvalues from the data qubit measurements. b, The connectivity
graph for the quantum circuit above, showing measurements and possible
patterns of detection events (grey), see main text for details. The example
detection events and their connections are highlighted, and the corresponding
detected errors are shown on the right, which when applied, will recover the
input data qubit state.
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Fault-tolerant quantum computation by anyons
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Abstract

A two-dimensional quantum system with anyonic excitations can be considered as a quan-
tum computer. Unitary transformations can be performed by moving the excitations around
each other. Measurements can be performed by joining excitations in pairs and observing the
result of fusion. Such computation is fault-tolerant by its physical nature.
! 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

A quantum computer can provide fast solution for certain computational prob-
lems (e.g., factoring and discrete logarithm [1]) which require exponential time on
an ordinary computer. Physical realization of a quantum computer is a big challenge
for scientists. One important problem is decoherence and systematic errors in unitary
transformations which occur in real quantum systems. From the purely theoretical
point of view, this problem has been solved due to Shor!s discovery of fault-tolerant
quantum computation [2], with subsequent improvements [3–6]. An arbitrary quan-
tum circuit can be simulated using imperfect gates, provided these gates are close to
the ideal ones up to a constant precision d. Unfortunately, the threshold value of d is
rather small;1 it is very difficult to achieve this precision.

Needless to say, classical computation can be also performed fault-
tolerantly. However, it is rarely done in practice because classical gates are reliable
enough. Why is it possible? Let us try to understand the easiest thing—why classical

Annals of Physics 303 (2003) 2–30
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E-mail addresses: kitaev@itp.ac.ru, kitaev@cs.caltech.edu.
1 Actually, the threshold is not known. Estimates vary from 1/300 [7] to 10!6 [4].
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We analyze surface codes, the topological quantum error-correcting codes intro-
duced by Kitaev. In these codes, qubits are arranged in a two-dimensional array on
a surface of nontrivial topology, and encoded quantum operations are associated
with nontrivial homology cycles of the surface. We formulate protocols for error
recovery, and study the efficacy of these protocols. An order-disorder phase transi-
tion occurs in this system at a nonzero critical value of the error rate; if the error
rate is below the critical value !the accuracy threshold", encoded information can
be protected arbitrarily well in the limit of a large code block. This phase transition
can be accurately modeled by a three-dimensional Z2 lattice gauge theory with
quenched disorder. We estimate the accuracy threshold, assuming that all quantum
gates are local, that qubits can be measured rapidly, and that polynomial-size clas-
sical computations can be executed instantaneously. We also devise a robust recov-
ery procedure that does not require measurement or fast classical processing; how-
ever, for this procedure the quantum gates are local only if the qubits are arranged
in four or more spatial dimensions. We discuss procedures for encoding, measure-
ment, and performing fault-tolerant universal quantum computation with surface
codes, and argue that these codes provide a promising framework for quantum
computing architectures. © 2002 American Institute of Physics.
#DOI: 10.1063/1.1499754$

I. INTRODUCTION

The microscopic world is quantum mechanical, but the macroscopic world is classical. This
fundamental dichotomy arises because a coherent quantum superposition of two readily distin-
guishable macroscopic states is highly unstable. The quantum state of a macroscopic system
rapidly decoheres due to unavoidable interactions between the system and its surroundings.

Decoherence is so pervasive that it might seem to preclude subtle quantum interference
phenomena in systems with many degrees of freedom. However, recent advances in the theory of
quantum error correction suggest otherwise.1,2 We have learned that quantum states can be clev-
erly encoded so that the debilitating effects of decoherence, if not too severe, can be resisted.
Furthermore, fault-tolerant protocols have been devised that allow an encoded quantum state to be
reliably processed by a quantum computer with imperfect components.3 In principle, then, very
intricate quantum systems can be stabilized and accurately controlled.

The theory of quantum fault tolerance has shown that, even for delicate coherent quantum
states, information processing can prevent information loss. In this article, we will study a par-
ticular approach to quantum fault tolerance that has notable advantages: in this approach, based on
the surface codes introduced in Refs. 4 and 5, the quantum processing needed to control errors has

a"CALT-68-2346
b"Electronic mail: edennis@princeton.edu
c"Electronic mail: kitaev@iqi.caltech.edu
d"Electronic mail: alandahl@theory.caltech.edu
e"Author to whom correspondence should be addressed. Electronic mail: preskill@theory.caltech.edu
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State preservation by repetitive error detection in a
superconducting quantum circuit
J. Kelly1*, R. Barends1{*, A. G. Fowler1,2{*, A. Megrant1,3, E. Jeffrey1{, T. C. White1, D. Sank1{, J. Y. Mutus1{, B. Campbell1,
Yu Chen1{, Z. Chen1, B. Chiaro1, A. Dunsworth1, I.-C. Hoi1, C. Neill1, P. J. J. O’Malley1, C. Quintana1, P. Roushan1{, A. Vainsencher1,
J. Wenner1, A. N. Cleland1 & John M. Martinis1{

Quantum computing becomes viable when a quantum state can
be protected from environment-induced error. If quantum bits
(qubits) are sufficiently reliable, errors are sparse and quantum error
correction (QEC)1–6 is capable of identifying and correcting them.
Adding more qubits improves the preservation of states by guaran-
teeing that increasingly larger clusters of errors will not cause logical
failure—a key requirement for large-scale systems. Using QEC to
extend the qubit lifetime remains one of the outstanding experi-
mental challenges in quantum computing. Here we report the pro-
tection of classical states from environmental bit-flip errors and dem-
onstrate the suppression of these errors with increasing system size.
We use a linear array of nine qubits, which is a natural step towards the
two-dimensional surface code QEC scheme7, and track errors as they
occur by repeatedly performing projective quantum non-demolition
parity measurements. Relative to a single physical qubit, we reduce the
failure rate in retrieving an input state by a factor of 2.7 when using
five of our nine qubits and by a factor of 8.5 when using all nine qubits
after eight cycles. Additionally, we tomographically verify preser-
vation of the non-classical Greenberger–Horne–Zeilinger state. The
successful suppression of environment-induced errors will motivate
further research into the many challenges associated with building a
large-scale superconducting quantum computer.

The ability to withstand multiple errors during computation is a
critical aspect of error correction. We define nth-order fault tolerance
to mean that any combination of n errors is tolerable. Previous experi-
ments based on nuclear magnetic resonance8,9, ion traps10 and super-
conducting circuits11–13 have demonstrated multi-qubit states that are
first-order tolerant to one type of error. Recently, experiments with ion
traps and superconducting circuits have shown the simultaneous detec-
tion of multiple types of errors14,15. All of these experiments demonstrate
error correction in a single round; however, quantum information must
be preserved throughout computation using multiple error-correction
cycles. The basics of repeating cycles have been shown in ion traps16 and
superconducting circuits17. Until now, it has been an open challenge
to combine these elements to make the information stored in a quan-
tum system robust against errors which intrinsically arise from the
environment.

The key to detecting errors in quantum information is to perform
quantum non-demolition (QND) parity measurements. In the surface
code, this is done by arranging qubits in a chequerboard pattern—with
data qubits corresponding to the white squares (blue in Fig. 1), and
measurement qubits to the black squares (green in Fig. 1)—and using
these ancilla measurement qubits to repetitively perform parity mea-
surements to detect bit-flip (X̂) and phase-flip (Ẑ) errors7,18. A square
chequerboard with (4n 1 1)2 qubits is nth-order fault tolerant, mean-
ing that at least n 1 1 errors must occur to cause failure in preserving a
state if fidelities are above a threshold. With error suppression factor
L . 1 and more qubits, failure becomes increasingly unlikely with

probability e / 21/Ln11 (assuming independent errors). The surface
code is highly appealing for superconducting quantum circuits as it
requires only nearest-neighbour interactions, single and two-qubit
gates, and fast repetitive measurements with fidelities above a lenient
threshold of approximately 99%. All of this has recently been demon-
strated in separate experiments19,20.

The simplest system demonstrating the basic elements of the surface
code is a one-dimensional chain of qubits, as seen in Fig. 1a. It can run
the repetition code, a primitive of the surface code, which corrects bit-
flip errors on both data and measurement qubits. The device shown in
Fig. 1b is a chain of nine qubits, which allows us to experimentally test
both first- and second-order fault tolerance. It consists of a supercon-
ducting aluminium film on a sapphire substrate, patterned into Xmon
transmon qubits21 with individual control and readout. The qubits are
the cross-shaped devices; they are capacitively coupled to their nearest
neighbours, controlled with microwave drive and frequency detuning
pulses, and measured with a dispersive readout scheme. The device
consists of five data qubits and four measurement qubits in an altern-
ating pattern; see Supplementary Information for details.

To detect bit-flips, we determine the parity of adjacent data qubits by
measuring the operator ẐẐ. We do this using an ancilla measurement
qubit, and performing single- and two-qubit quantum gates (Fig. 1c).
The operator measurement can have two values: 11 for states j00æ and
j11æ, and 21 for j01æ and j10æ. Therefore, errors can be detected as they
occur by repeating this operator measurement and noting changes in
the outcome. Importantly, this measurement does not destroy the
quantum nature: given input aj00æ 1 bj11æ the result will be 11 and
the quantum state remains, with similar behaviour for other Bell-like
superposition states. In the repetition code, simultaneous measure-
ments of these operators enable multiple bit-flip errors to be detected.

We now discuss how bit-flip errors, which can occur on any qubit and
at any time, are identified. The quantum circuit of the repetition code is
shown in Fig. 2a, for three cycles (in time) and nine qubits. This is the
natural extension of the schematic in Fig. 1c, optimized for our hardware
(Supplementary Information). Figure 2a illustrates four distinct types of
bit-flip errors (stars): measurement error (gold), single-cycle data error
(purple), two-cycle data error (red), and a data error after the final cycle
(blue). Controlled-NOT (CNOT) gates propagate bit-flip errors on the
data qubit to the measurement qubit. Each of these errors is typically
detected at two locations if in the interior and at one location if at the
boundary; we call these ‘detection events’. The error connectivity graph22

is shown in Fig. 2b, where the grey lines indicate every possible pattern of
detection events that can arise from a single error. The last column
of values for the ẐẐ operators in Fig. 2b are constructed from the data
qubit measurements, so that errors between the last cycle and data qubit
measurement can be detected (Supplementary Information).

In the absence of errors, there are two possible patterns of sequential
measurement results. If a measurement qubit’s neighbouring data

*These authors contributed equally to this work.

1Department of Physics, University of California, Santa Barbara, California 93106, USA. 2Centre for Quantum Computation and Communication Technology, School of Physics, The University of Melbourne,
Victoria 3010, Australia. 3Department of Materials, University of California, Santa Barbara, California 93106, USA. {Present address: Google Inc., Santa Barbara, California 93117, USA.
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Fault tolerant quantum computation requires error correction

Error correcting codes starting to be built, but still far off technologically. 
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The toric code
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learning to error correction of the surface code was
implemented. That work focuses on the important is-
sue of error generated in the readout of the syndrome
and used an auxiliary ”referee decoder” to assist the
performance of the RL decooder. In the present work
we consider the simpler but conceptually more direct
problem of error correction on a perfect syndrome, not
corrupted by error. The problem can be addressed
by the Minimum Weight Perfect Matching (MWPM)
or Blossom algorithm[24–26] and has also been the
topic of many studies using methods such as renor-
malization group[27], cellular automata[28, 29], and
a number of neural network based decoders typically
using supervised learning[17, 30–36]. We find that by
setting up a reward scheme that encourage the elim-
ination of the syndrome in as few operations as pos-
sible within the deep Q-learning (or deep Q-network,
DQN)[6, 7] formalism we are able to arrive at an algo-
rithm that is comparable in performance to MWPM.
Although the present algorithm does not outperform
the latter we expect that it has the potential to be
more versatile when addressing correlated noise, mea-
surement noise, or the surface code for varying ge-
ometries. Compared to the MWPM algorithm the
RL algorithm also has the advantage that it provides
step by step correction, meaning that it can readily
adjust to the introduction of additional errors during
the correction epsiode without recalculating the full
error correcting strings of bit (or phase) flips. The rea-
son that we study the toric code in this work, rather
than the surface code with boundaries, is that the Q-
network can make very good use of the translational
symmetry of the former, which significantly speeds up
the training.

The outline of the paper is the following. In the
Background section we give a brief but self-contained
summary of the main features of the toric code includ-
ing the basic structure of the error correction and a
similar summary of one-step Q-learning and deep Q-
learning. (The reader familiar with these topics can
readily skip ahead.) The following section, RL Algo-
rithm, describes the formulation and training of the
error correcting agent. In the Results section we shows
that we have trained the RL agent up to system sizes
of 7 ◊ 7 with performance which is very close to the
MWPM algorithm. We finally conclude and append
details of the asymptotic fail rate for small error rates
as well as the neural network architecture and the RL
and network hyperparameters.

2 Background
2.1 Toric code
Here we recapitulate the main aspects of the topo-
logical toric code in an informal manner and from
the perspective of an interacting quantum spin-

Figure 1: A d = 5 toric code lattice with rings indicating the
physical cubits and grey showing the periodic boundary con-
ditions. a) Plaquette (green) and vertex (red) operators, as
products of ‡

z and ‡
x Pauli matrices. b) A single vertex op-

erator can be represented as a loop flipping the cubits that
the it crosses. c) Two neighboring vertex operators make
up a larger loop. d) The logical operators X1/2 (red) and
Z1/2 (green) consist of loops winding the torus and are not
representable in terms of products of vertex or plaquette op-
erators.

Hamiltonian.[20, 21]1

The basic construction is a square lattice with a
spin- 1

2 degree of freedom on every bond, the physical
qubits, and with periodic boundary conditions mak-
ing up the torus, see Figure 1. (An alternative rotated
lattice representation with the qubits on sites is also
common in the literature.) The model is given in
terms of a Hamiltonian

H = ≠
ÿ

–

P̂– ≠
ÿ

‹

V̂‹ , (1)

where – runs over all plaquettes and ‹ over all ver-
tices (sites). The stabilizers are the plaquette oper-
ators P̂– =

r
iœ–

‡z

i
and the vertex operators V̂‹ =r

iœ‹
‡x

i
, where ‡z and ‡x are the Pauli matrices.

(Where, in the ‡z basis, ‡z| ø / ¿Í = ±1| ø / ¿Í
and ‡x| ø / ¿Í = | ¿ / øÍ.) The stabilizers commute
with each other and the Hamiltonian thus block diag-
onalizing the latter. On a d ◊ d lattice of plaquettes
d2 ≠ 1 plaquette operators are linearly independent
(e.g. it is not possible to have a single ≠1 eigenvalue
with all other +1) and correspondingly for the ver-
tex operators. With 2d2 physical qubits and 2d2 ≠ 2
stabilizers the size of each block is 22d

2
/22d

2≠2 = 4,
corresponding in particular to a ground state which is
4-fold degenerate. These are the states that will serve
as the logical qubits. (More precisely, given the 4-fold
degeneracy it is a qudit or base-4 qubit.)

1Figures in this section were inspired by lecture notes [37].

2

Commuting Plaquette and Vertex stabilizers (parity checks)

P̂↵ =
Y

i2↵

�z
i

V̂⌫ =
Y

i2⌫

�x
i

2d2 physical qubits, 2d2-2 independent stabilizers
d
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Figure 1: A d = 5 toric code with rings indicating the physi-
cal qubits and grey showing the periodic boundary conditions.
a) Plaquette (green) and vertex (red) stabilizer operators, as
products of ‡

z and ‡
x Pauli matrices. b) A single vertex op-

erator can be represented as a loop flipping the cubits that
the it crosses. c) Two neighboring vertex operators make
up a larger loop. d) The logical operators X̄1/2 (red) and
Z̄1/2 (green) consist of loops winding the torus and are not
representable in terms of products of vertex or plaquette op-
erators.

r
iœ‹

‡x

i
, where ‡z and ‡x are the Pauli matrices.

(Where, in the ‡z basis, ‡z| ø / ¿Í = ±1| ø / ¿Í
and ‡x| ø / ¿Í = | ¿ / øÍ.) The stabilizers commute
with each other and the Hamiltonian thus block diag-
onalizing the latter. On a d ◊ d lattice of plaquettes
d2 ≠ 1 plaquette operators are linearly independent
(e.g. it is not possible to have a single ≠1 eigenvalue
with all other +1) and correspondingly for the ver-
tex operators. With 2d2 physical qubits and 2d2 ≠ 2
stabilizers the size of each block is 22d

2
/22d

2≠2 = 4,
corresponding in particular to a ground state which is
4-fold degenerate. These are the states that will serve
as the logical qubits. (More precisely, given the 4-fold
degeneracy it is a qudit or base-4 qubit.)

To derive the ground state consider first the pla-
quette operator in the ‡z-basis; clearly a ground state
must have an even number of each spin-up and spin-
down on every plaquette to be a +1 eigenstate of each
plaquette operator. Let’s consider the state with all
spin-up | øøø · · · Í; acting with a vertex operator on
this flips all the spins around the vertex (see Fig. 1b)
giving a state still in ground state sector of the plaque-
tte operators as an even number of spins are flipped
on the plaquettes surrounding the vertex. (As is also
clear from the fact that all the stabilizer operators
commute.) The +1 eigenstate of that particular ver-
tex operator is thus the symmetric superposition of
the two states. A convenient way to express the op-
eration of one or several adjacent vertex operators is

in turns of loop traversing the flipped spins. Such
loops (fig. 1b-c) generated from products of vertex
operators will always be topologically trivial loops
on the surface of the torus since they are just con-
structed by merging the local loop corresponding to a
single vertex operator. Successively acting with ver-
tex operators on the states generated from the orig-
inal | øøø · · · Í we realize that the ground state is
simply the symmetric superposition of all states that
are generated from this by acting with (trivial) loops
|GS0Í =

q
iœall trivial loops loopi| øøø · · · Í.

To generate the other ground states we consider
the operators X̄1 and X̄2 (Fig. 1d) which are prod-
ucts of ‡x corresponding to the two non-trivial loops
that wind the torus. (Deformations of these loops
just correspond to multiplication by trivial loops and
is thus inconsequential.) Correspondingly there are
non-trivial loops of ‡z operators Z̄1 and Z̄2. The
four ground states are thus the topologically distinct
states {|GS0Í, X̄1|GS0Í, X̄2|GS0Í, X̄2X̄1|GS0Í} distin-
guished by their eigenvalues of Z̄1 and Z̄2 being ±1.
For a torus with d ◊ d plaquettes there are 2d2 physi-
cal qubits and the code distance, i.e. minimum length
of any logical operator (X̄i or Z̄i), is d.

2.1.1 Error correction
Errors in the physical qubits will take the state out of
the ground state sector and thereby mask the encoded
state. The task of the error correction procedure is
to move the system back to the ground state sector
without inadvertently performing a logical operation
to change the logical qubit state. A ‡x error on a
physical qubit corresponds to a bit-flip error. On the
toric code this gives rise to a pair of defects (a.k.a.
quasiparticles or anyons) in the form of neighboring
plaquettes with ≠1 eigenvalues of the plaquette sta-
bilizers. Similarly a ‡z error corresponds to a phase-
flip error which gives rise to a pair of neighboring ≠1
defects on two vertices. A ‡y = i‡x‡z simultane-
ously creates both types of defects. A natural error
process is to assume that X, Y, Z errors occur with
equal probability, so called depolarizing noise. This
however requires to treat correlations between X and
Z errors and the simpler uncorrelated noise model
is often used, which is what we will consider in this
work, focusing on bit-flip errors and corresponding
plaquette defects. Here X and Z errors occur inde-
pendently with probability p whereas Y = XZ errors
occur with probability p2. Correcting independent X
and Z errors is completely equivalent (with defects
either on plaquettes or on vertices) and it is therefore
su�cient to formulate an error correcting algorithm
for one type of error. (For actual realizations of the
physical qubits the error process may in fact be inter-
mediate between these two cases[45].) Regardless of
noise model and type of error an important aspect of
the error correction of a stabilizer formalism is that
the entanglement of the logical qubit states or its ex-
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Figure 1: A d = 5 toric code with rings indicating the physi-
cal qubits and grey showing the periodic boundary conditions.
a) Plaquette (green) and vertex (red) stabilizer operators, as
products of ‡

z and ‡
x Pauli matrices. b) A single vertex op-

erator can be represented as a loop flipping the cubits that
the it crosses. c) Two neighboring vertex operators make
up a larger loop. d) The logical operators X̄1/2 (red) and
Z̄1/2 (green) consist of loops winding the torus and are not
representable in terms of products of vertex or plaquette op-
erators.

r
iœ‹
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i
, where ‡z and ‡x are the Pauli matrices.

(Where, in the ‡z basis, ‡z| ø / ¿Í = ±1| ø / ¿Í
and ‡x| ø / ¿Í = | ¿ / øÍ.) The stabilizers commute
with each other and the Hamiltonian thus block diag-
onalizing the latter. On a d ◊ d lattice of plaquettes
d2 ≠ 1 plaquette operators are linearly independent
(e.g. it is not possible to have a single ≠1 eigenvalue
with all other +1) and correspondingly for the ver-
tex operators. With 2d2 physical qubits and 2d2 ≠ 2
stabilizers the size of each block is 22d

2
/22d

2≠2 = 4,
corresponding in particular to a ground state which is
4-fold degenerate. These are the states that will serve
as the logical qubits. (More precisely, given the 4-fold
degeneracy it is a qudit or base-4 qubit.)

To derive the ground state consider first the pla-
quette operator in the ‡z-basis; clearly a ground state
must have an even number of each spin-up and spin-
down on every plaquette to be a +1 eigenstate of each
plaquette operator. Let’s consider the state with all
spin-up | øøø · · · Í; acting with a vertex operator on
this flips all the spins around the vertex (see Fig. 1b)
giving a state still in ground state sector of the plaque-
tte operators as an even number of spins are flipped
on the plaquettes surrounding the vertex. (As is also
clear from the fact that all the stabilizer operators
commute.) The +1 eigenstate of that particular ver-
tex operator is thus the symmetric superposition of
the two states. A convenient way to express the op-
eration of one or several adjacent vertex operators is

in turns of loop traversing the flipped spins. Such
loops (fig. 1b-c) generated from products of vertex
operators will always be topologically trivial loops
on the surface of the torus since they are just con-
structed by merging the local loop corresponding to a
single vertex operator. Successively acting with ver-
tex operators on the states generated from the orig-
inal | øøø · · · Í we realize that the ground state is
simply the symmetric superposition of all states that
are generated from this by acting with (trivial) loops
|GS0Í =

q
iœall trivial loops loopi| øøø · · · Í.

To generate the other ground states we consider
the operators X̄1 and X̄2 (Fig. 1d) which are prod-
ucts of ‡x corresponding to the two non-trivial loops
that wind the torus. (Deformations of these loops
just correspond to multiplication by trivial loops and
is thus inconsequential.) Correspondingly there are
non-trivial loops of ‡z operators Z̄1 and Z̄2. The
four ground states are thus the topologically distinct
states {|GS0Í, X̄1|GS0Í, X̄2|GS0Í, X̄2X̄1|GS0Í} distin-
guished by their eigenvalues of Z̄1 and Z̄2 being ±1.
For a torus with d ◊ d plaquettes there are 2d2 physi-
cal qubits and the code distance, i.e. minimum length
of any logical operator (X̄i or Z̄i), is d.

2.1.1 Error correction
Errors in the physical qubits will take the state out of
the ground state sector and thereby mask the encoded
state. The task of the error correction procedure is
to move the system back to the ground state sector
without inadvertently performing a logical operation
to change the logical qubit state. A ‡x error on a
physical qubit corresponds to a bit-flip error. On the
toric code this gives rise to a pair of defects (a.k.a.
quasiparticles or anyons) in the form of neighboring
plaquettes with ≠1 eigenvalues of the plaquette sta-
bilizers. Similarly a ‡z error corresponds to a phase-
flip error which gives rise to a pair of neighboring ≠1
defects on two vertices. A ‡y = i‡x‡z simultane-
ously creates both types of defects. A natural error
process is to assume that X, Y, Z errors occur with
equal probability, so called depolarizing noise. This
however requires to treat correlations between X and
Z errors and the simpler uncorrelated noise model
is often used, which is what we will consider in this
work, focusing on bit-flip errors and corresponding
plaquette defects. Here X and Z errors occur inde-
pendently with probability p whereas Y = XZ errors
occur with probability p2. Correcting independent X
and Z errors is completely equivalent (with defects
either on plaquettes or on vertices) and it is therefore
su�cient to formulate an error correcting algorithm
for one type of error. (For actual realizations of the
physical qubits the error process may in fact be inter-
mediate between these two cases[45].) Regardless of
noise model and type of error an important aspect of
the error correction of a stabilizer formalism is that
the entanglement of the logical qubit states or its ex-
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Figure 1: A d = 5 toric code with rings indicating the physi-
cal qubits and grey showing the periodic boundary conditions.
a) Plaquette (green) and vertex (red) stabilizer operators, as
products of ‡

z and ‡
x Pauli matrices. b) A single vertex op-

erator can be represented as a loop flipping the cubits that
the it crosses. c) Two neighboring vertex operators make
up a larger loop. d) The logical operators X̄1/2 (red) and
Z̄1/2 (green) consist of loops winding the torus and are not
representable in terms of products of vertex or plaquette op-
erators.
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, where ‡z and ‡x are the Pauli matrices.

(Where, in the ‡z basis, ‡z| ø / ¿Í = ±1| ø / ¿Í
and ‡x| ø / ¿Í = | ¿ / øÍ.) The stabilizers commute
with each other and the Hamiltonian thus block diag-
onalizing the latter. On a d ◊ d lattice of plaquettes
d2 ≠ 1 plaquette operators are linearly independent
(e.g. it is not possible to have a single ≠1 eigenvalue
with all other +1) and correspondingly for the ver-
tex operators. With 2d2 physical qubits and 2d2 ≠ 2
stabilizers the size of each block is 22d

2
/22d

2≠2 = 4,
corresponding in particular to a ground state which is
4-fold degenerate. These are the states that will serve
as the logical qubits. (More precisely, given the 4-fold
degeneracy it is a qudit or base-4 qubit.)

To derive the ground state consider first the pla-
quette operator in the ‡z-basis; clearly a ground state
must have an even number of each spin-up and spin-
down on every plaquette to be a +1 eigenstate of each
plaquette operator. Let’s consider the state with all
spin-up | øøø · · · Í; acting with a vertex operator on
this flips all the spins around the vertex (see Fig. 1b)
giving a state still in ground state sector of the plaque-
tte operators as an even number of spins are flipped
on the plaquettes surrounding the vertex. (As is also
clear from the fact that all the stabilizer operators
commute.) The +1 eigenstate of that particular ver-
tex operator is thus the symmetric superposition of
the two states. A convenient way to express the op-
eration of one or several adjacent vertex operators is

in turns of loop traversing the flipped spins. Such
loops (fig. 1b-c) generated from products of vertex
operators will always be topologically trivial loops
on the surface of the torus since they are just con-
structed by merging the local loop corresponding to a
single vertex operator. Successively acting with ver-
tex operators on the states generated from the orig-
inal | øøø · · · Í we realize that the ground state is
simply the symmetric superposition of all states that
are generated from this by acting with (trivial) loops
|GS0Í =

q
iœall trivial loops loopi| øøø · · · Í.

To generate the other ground states we consider
the operators X̄1 and X̄2 (Fig. 1d) which are prod-
ucts of ‡x corresponding to the two non-trivial loops
that wind the torus. (Deformations of these loops
just correspond to multiplication by trivial loops and
is thus inconsequential.) Correspondingly there are
non-trivial loops of ‡z operators Z̄1 and Z̄2. The
four ground states are thus the topologically distinct
states {|GS0Í, X̄1|GS0Í, X̄2|GS0Í, X̄2X̄1|GS0Í} distin-
guished by their eigenvalues of Z̄1 and Z̄2 being ±1.
For a torus with d ◊ d plaquettes there are 2d2 physi-
cal qubits and the code distance, i.e. minimum length
of any logical operator (X̄i or Z̄i), is d.

2.1.1 Error correction
Errors in the physical qubits will take the state out of
the ground state sector and thereby mask the encoded
state. The task of the error correction procedure is
to move the system back to the ground state sector
without inadvertently performing a logical operation
to change the logical qubit state. A ‡x error on a
physical qubit corresponds to a bit-flip error. On the
toric code this gives rise to a pair of defects (a.k.a.
quasiparticles or anyons) in the form of neighboring
plaquettes with ≠1 eigenvalues of the plaquette sta-
bilizers. Similarly a ‡z error corresponds to a phase-
flip error which gives rise to a pair of neighboring ≠1
defects on two vertices. A ‡y = i‡x‡z simultane-
ously creates both types of defects. A natural error
process is to assume that X, Y, Z errors occur with
equal probability, so called depolarizing noise. This
however requires to treat correlations between X and
Z errors and the simpler uncorrelated noise model
is often used, which is what we will consider in this
work, focusing on bit-flip errors and corresponding
plaquette defects. Here X and Z errors occur inde-
pendently with probability p whereas Y = XZ errors
occur with probability p2. Correcting independent X
and Z errors is completely equivalent (with defects
either on plaquettes or on vertices) and it is therefore
su�cient to formulate an error correcting algorithm
for one type of error. (For actual realizations of the
physical qubits the error process may in fact be inter-
mediate between these two cases[45].) Regardless of
noise model and type of error an important aspect of
the error correction of a stabilizer formalism is that
the entanglement of the logical qubit states or its ex-
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To derive the ground state consider first the pla-
quette operator in the ‡z-basis; clearly a ground state
must have an even number of each spin-up and spin-
down on every plaquette to be a +1 eigenstate of each
plaquette operator. Let’s consider the state with all
spin-up | øøø · · · Í; acting with a vertex operator on
this flips all the spins around the vertex (see Fig. 1b)
giving a state still in ground state sector of the plaque-
tte operators as an even number of spins are flipped
on the plaquettes surrounding the vertex. (As is also
clear from the fact that all the stabilizer operators
commute.) The +1 eigenstate of that particular ver-
tex operator is thus the symmetric superposition of
the two states. A convenient way to express the op-
eration of one or several adjacent vertex operators is
in turns of loop traversing the flipped spins. Such
loops (fig. 1b-c) generated from products of vertex
operators will always be topologically trivial loops
on the surface of the torus since they are just con-
structed by merging the local loop corresponding to a
single vertex operator. Successively acting with ver-
tex operators on the states generated from the orig-
inal | øøø · · · Í we realize that the ground state is
simply the symmetric superposition of all states that
are generated from this by acting with (trivial) loops
|GS0Í =

q
iœall trivial loops loopi| øøø · · · Í.

To generate the other ground states we consider
the operators X1 and X2 (Fig. 1d) which are prod-
ucts of ‡x corresponding to the two non-trivial loops
that wind the torus. (Deformations of these loops
just correspond to multiplication by trivial loops and
is thus inconsequential.) Correspondingly there are
non-trivial loops of ‡z operators Z1 and Z2. The
four ground states are thus the topologically distinct
states {|GS0Í, X1|GS0Í, X2|GS0Í, X2X1|GS0Í} distin-
guished by their eigenvalues of Z1 and Z2 being ±1.
For a torus with d ◊ d plaquettes there are 2d2 physi-
cal qubits and the code distance, i.e. minimum length
of any logical operator (Xi or Zi), is d.

2.1.1 Error correction
Errors in the physical qubits will take the state out of
the ground state sector and thereby mask the encoded
state. The task of the error correction procedure is
to move the system back to the ground state sector
without inadvertently performing a logical operation
to change the logical qubit state. A ‡x error on a
physical qubit corresponds to a bit-flip error. On the
toric code this gives rise to a pair of defects (a.k.a.
quasiparticles or anyons) in the form of neighboring
plaquettes with ≠1 eigenvalues of the plaquette stabi-
lizers. Similarly a ‡z error corresponds to a phase-flip
error which gives rise to a pair of neighboring ≠1 de-
fects on two vertices. A ‡y = i‡x‡z simultaneously
creates both types of defects. A natural error pro-
cess is to assume that x, y, z errors occur with equal
probability, so called depolarizing or correlated noise.
This however requires to treat correlations between x

Figure 2: Bit-flip errors (red ’X’) and possible error correc-
tion bit-flips (blue ’X’). (a) Two neighboring errors and the
corresponding error chain (red line) and syndrome (red dots).
(b) Visualized in terms of the syndrome with error chain and
two possible correction chains (blue) as expressed explicitly in
(c) and (d). The error chain plus the correction chain in (d)
constitutes a non-trivial loop and a logical bit-flip operation
(as in Figure 1d), thus a failed error correction, in contrast
to the trivial loop in (c).

and z errors and the simpler uncorrelated noise model
is often used, which is what we will consider in this
work, focusing on bit-flip errors and corresponding
plaquette defects. Here x and z errors occur indepen-
dently with probability p whereas y errors occur with
probability p2. Correcting independent x and z errors
is completely equivalent (with defects either on pla-
quettes or on vertices) and it is therefore su�cient to
formulate an error correcting algorithm for one type
of error. (For actual realizations of the physical qubits
the error process is in fact expected to be intermedi-
ate between these two cases[38].) Regardless of noise
model and type of error an important aspect of the
error correction of a stabilizer formalism is that the
microscopic entanglement of the logical cubit states
or its excitations does not have to be considered ex-
plicitly as errors act equivalently on all states that
belong to the same stabilizer sector.

A crucial aspect of quantum error correction is that
the actual bit-flip errors cannot be measured without
collapsing the state into a partial basis and destroying
the qubit. What can be measured without destroying
the logical qubit are the stabilizers, i.e. for bit-flip
error the ±1 eigenvalue of the plaquette operators.
The complete set of incorrect (≠1) plaquettes makes
up the syndrome of the state. The complete set of
bit-flip errors will produce a unique syndrome as the
end-points of strings of bit-flip errors. The converse
however is not true, which is what makes the task
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To derive the ground state consider first the pla-
quette operator in the ‡z-basis; clearly a ground state
must have an even number of each spin-up and spin-
down on every plaquette to be a +1 eigenstate of each
plaquette operator. Let’s consider the state with all
spin-up | øøø · · · Í; acting with a vertex operator on
this flips all the spins around the vertex (see Fig. 1b)
giving a state still in ground state sector of the plaque-
tte operators as an even number of spins are flipped
on the plaquettes surrounding the vertex. (As is also
clear from the fact that all the stabilizer operators
commute.) The +1 eigenstate of that particular ver-
tex operator is thus the symmetric superposition of
the two states. A convenient way to express the op-
eration of one or several adjacent vertex operators is
in turns of loop traversing the flipped spins. Such
loops (fig. 1b-c) generated from products of vertex
operators will always be topologically trivial loops
on the surface of the torus since they are just con-
structed by merging the local loop corresponding to a
single vertex operator. Successively acting with ver-
tex operators on the states generated from the orig-
inal | øøø · · · Í we realize that the ground state is
simply the symmetric superposition of all states that
are generated from this by acting with (trivial) loops
|GS0Í =

q
iœall trivial loops loopi| øøø · · · Í.

To generate the other ground states we consider
the operators X1 and X2 (Fig. 1d) which are prod-
ucts of ‡x corresponding to the two non-trivial loops
that wind the torus. (Deformations of these loops
just correspond to multiplication by trivial loops and
is thus inconsequential.) Correspondingly there are
non-trivial loops of ‡z operators Z1 and Z2. The
four ground states are thus the topologically distinct
states {|GS0Í, X1|GS0Í, X2|GS0Í, X2X1|GS0Í} distin-
guished by their eigenvalues of Z1 and Z2 being ±1.
For a torus with d ◊ d plaquettes there are 2d2 physi-
cal qubits and the code distance, i.e. minimum length
of any logical operator (Xi or Zi), is d.

2.1.1 Error correction
Errors in the physical qubits will take the state out of
the ground state sector and thereby mask the encoded
state. The task of the error correction procedure is
to move the system back to the ground state sector
without inadvertently performing a logical operation
to change the logical qubit state. A ‡x error on a
physical qubit corresponds to a bit-flip error. On the
toric code this gives rise to a pair of defects (a.k.a.
quasiparticles or anyons) in the form of neighboring
plaquettes with ≠1 eigenvalues of the plaquette stabi-
lizers. Similarly a ‡z error corresponds to a phase-flip
error which gives rise to a pair of neighboring ≠1 de-
fects on two vertices. A ‡y = i‡x‡z simultaneously
creates both types of defects. A natural error pro-
cess is to assume that x, y, z errors occur with equal
probability, so called depolarizing or correlated noise.
This however requires to treat correlations between x

Figure 2: Bit-flip errors (red ’X’) and possible error correc-
tion bit-flips (blue ’X’). (a) Two neighboring errors and the
corresponding error chain (red line) and syndrome (red dots).
(b) Visualized in terms of the syndrome with error chain and
two possible correction chains (blue) as expressed explicitly in
(c) and (d). The error chain plus the correction chain in (d)
constitutes a non-trivial loop and a logical bit-flip operation
(as in Figure 1d), thus a failed error correction, in contrast
to the trivial loop in (c).

and z errors and the simpler uncorrelated noise model
is often used, which is what we will consider in this
work, focusing on bit-flip errors and corresponding
plaquette defects. Here x and z errors occur indepen-
dently with probability p whereas y errors occur with
probability p2. Correcting independent x and z errors
is completely equivalent (with defects either on pla-
quettes or on vertices) and it is therefore su�cient to
formulate an error correcting algorithm for one type
of error. (For actual realizations of the physical qubits
the error process is in fact expected to be intermedi-
ate between these two cases[38].) Regardless of noise
model and type of error an important aspect of the
error correction of a stabilizer formalism is that the
microscopic entanglement of the logical cubit states
or its excitations does not have to be considered ex-
plicitly as errors act equivalently on all states that
belong to the same stabilizer sector.

A crucial aspect of quantum error correction is that
the actual bit-flip errors cannot be measured without
collapsing the state into a partial basis and destroying
the qubit. What can be measured without destroying
the logical qubit are the stabilizers, i.e. for bit-flip
error the ±1 eigenvalue of the plaquette operators.
The complete set of incorrect (≠1) plaquettes makes
up the syndrome of the state. The complete set of
bit-flip errors will produce a unique syndrome as the
end-points of strings of bit-flip errors. The converse
however is not true, which is what makes the task
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learning to error correction of the surface code was
implemented. That work focuses on the important is-
sue of error generated in the readout of the syndrome
and used an auxiliary ”referee decoder” to assist the
performance of the RL decooder. In the present work
we consider the simpler but conceptually more direct
problem of error correction on a perfect syndrome, not
corrupted by error. The problem can be addressed
by the Minimum Weight Perfect Matching (MWPM)
or Blossom algorithm[24–26] and has also been the
topic of many studies using methods such as renor-
malization group[27], cellular automata[28, 29], and
a number of neural network based decoders typically
using supervised learning[17, 30–36]. We find that by
setting up a reward scheme that encourage the elim-
ination of the syndrome in as few operations as pos-
sible within the deep Q-learning (or deep Q-network,
DQN)[6, 7] formalism we are able to arrive at an algo-
rithm that is comparable in performance to MWPM.
Although the present algorithm does not outperform
the latter we expect that it has the potential to be
more versatile when addressing correlated noise, mea-
surement noise, or the surface code for varying ge-
ometries. Compared to the MWPM algorithm the
RL algorithm also has the advantage that it provides
step by step correction, meaning that it can readily
adjust to the introduction of additional errors during
the correction epsiode without recalculating the full
error correcting strings of bit (or phase) flips. The rea-
son that we study the toric code in this work, rather
than the surface code with boundaries, is that the Q-
network can make very good use of the translational
symmetry of the former, which significantly speeds up
the training.

The outline of the paper is the following. In the
Background section we give a brief but self-contained
summary of the main features of the toric code includ-
ing the basic structure of the error correction and a
similar summary of one-step Q-learning and deep Q-
learning. (The reader familiar with these topics can
readily skip ahead.) The following section, RL Algo-
rithm, describes the formulation and training of the
error correcting agent. In the Results section we shows
that we have trained the RL agent up to system sizes
of 7 ◊ 7 with performance which is very close to the
MWPM algorithm. We finally conclude and append
details of the asymptotic fail rate for small error rates
as well as the neural network architecture and the RL
and network hyperparameters.

2 Background
2.1 Toric code
Here we recapitulate the main aspects of the topo-
logical toric code in an informal manner and from
the perspective of an interacting quantum spin-

Figure 1: A d = 5 toric code lattice with rings indicating the
physical cubits and grey showing the periodic boundary con-
ditions. a) Plaquette (green) and vertex (red) operators, as
products of ‡

z and ‡
x Pauli matrices. b) A single vertex op-

erator can be represented as a loop flipping the cubits that
the it crosses. c) Two neighboring vertex operators make
up a larger loop. d) The logical operators X1/2 (red) and
Z1/2 (green) consist of loops winding the torus and are not
representable in terms of products of vertex or plaquette op-
erators.

Hamiltonian.[20, 21]1

The basic construction is a square lattice with a
spin- 1

2 degree of freedom on every bond, the physical
qubits, and with periodic boundary conditions mak-
ing up the torus, see Figure 1. (An alternative rotated
lattice representation with the qubits on sites is also
common in the literature.) The model is given in
terms of a Hamiltonian

H = ≠
ÿ

–

P̂– ≠
ÿ

‹

V̂‹ , (1)

where – runs over all plaquettes and ‹ over all ver-
tices (sites). The stabilizers are the plaquette oper-
ators P̂– =

r
iœ–

‡z

i
and the vertex operators V̂‹ =r

iœ‹
‡x

i
, where ‡z and ‡x are the Pauli matrices.

(Where, in the ‡z basis, ‡z| ø / ¿Í = ±1| ø / ¿Í
and ‡x| ø / ¿Í = | ¿ / øÍ.) The stabilizers commute
with each other and the Hamiltonian thus block diag-
onalizing the latter. On a d ◊ d lattice of plaquettes
d2 ≠ 1 plaquette operators are linearly independent
(e.g. it is not possible to have a single ≠1 eigenvalue
with all other +1) and correspondingly for the ver-
tex operators. With 2d2 physical qubits and 2d2 ≠ 2
stabilizers the size of each block is 22d

2
/22d

2≠2 = 4,
corresponding in particular to a ground state which is
4-fold degenerate. These are the states that will serve
as the logical qubits. (More precisely, given the 4-fold
degeneracy it is a qudit or base-4 qubit.)

1Figures in this section were inspired by lecture notes [37].
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Figure 1: A d = 5 toric code with rings indicating the physi-
cal qubits and grey showing the periodic boundary conditions.
a) Plaquette (green) and vertex (red) stabilizer operators, as
products of ‡

z and ‡
x Pauli matrices. b) A single vertex op-

erator can be represented as a loop flipping the cubits that
the it crosses. c) Two neighboring vertex operators make
up a larger loop. d) The logical operators X̄1/2 (red) and
Z̄1/2 (green) consist of loops winding the torus and are not
representable in terms of products of vertex or plaquette op-
erators.

r
iœ‹

‡x

i
, where ‡z and ‡x are the Pauli matrices.

(Where, in the ‡z basis, ‡z| ø / ¿Í = ±1| ø / ¿Í
and ‡x| ø / ¿Í = | ¿ / øÍ.) The stabilizers commute
with each other and the Hamiltonian thus block diag-
onalizing the latter. On a d ◊ d lattice of plaquettes
d2 ≠ 1 plaquette operators are linearly independent
(e.g. it is not possible to have a single ≠1 eigenvalue
with all other +1) and correspondingly for the ver-
tex operators. With 2d2 physical qubits and 2d2 ≠ 2
stabilizers the size of each block is 22d

2
/22d

2≠2 = 4,
corresponding in particular to a ground state which is
4-fold degenerate. These are the states that will serve
as the logical qubits. (More precisely, given the 4-fold
degeneracy it is a qudit or base-4 qubit.)

To derive the ground state consider first the pla-
quette operator in the ‡z-basis; clearly a ground state
must have an even number of each spin-up and spin-
down on every plaquette to be a +1 eigenstate of each
plaquette operator. Let’s consider the state with all
spin-up | øøø · · · Í; acting with a vertex operator on
this flips all the spins around the vertex (see Fig. 1b)
giving a state still in ground state sector of the plaque-
tte operators as an even number of spins are flipped
on the plaquettes surrounding the vertex. (As is also
clear from the fact that all the stabilizer operators
commute.) The +1 eigenstate of that particular ver-
tex operator is thus the symmetric superposition of
the two states. A convenient way to express the op-
eration of one or several adjacent vertex operators is

in turns of loop traversing the flipped spins. Such
loops (fig. 1b-c) generated from products of vertex
operators will always be topologically trivial loops
on the surface of the torus since they are just con-
structed by merging the local loop corresponding to a
single vertex operator. Successively acting with ver-
tex operators on the states generated from the orig-
inal | øøø · · · Í we realize that the ground state is
simply the symmetric superposition of all states that
are generated from this by acting with (trivial) loops
|GS0Í =

q
iœall trivial loops loopi| øøø · · · Í.

To generate the other ground states we consider
the operators X̄1 and X̄2 (Fig. 1d) which are prod-
ucts of ‡x corresponding to the two non-trivial loops
that wind the torus. (Deformations of these loops
just correspond to multiplication by trivial loops and
is thus inconsequential.) Correspondingly there are
non-trivial loops of ‡z operators Z̄1 and Z̄2. The
four ground states are thus the topologically distinct
states {|GS0Í, X̄1|GS0Í, X̄2|GS0Í, X̄2X̄1|GS0Í} distin-
guished by their eigenvalues of Z̄1 and Z̄2 being ±1.
For a torus with d ◊ d plaquettes there are 2d2 physi-
cal qubits and the code distance, i.e. minimum length
of any logical operator (X̄i or Z̄i), is d.

2.1.1 Error correction
Errors in the physical qubits will take the state out of
the ground state sector and thereby mask the encoded
state. The task of the error correction procedure is
to move the system back to the ground state sector
without inadvertently performing a logical operation
to change the logical qubit state. A ‡x error on a
physical qubit corresponds to a bit-flip error. On the
toric code this gives rise to a pair of defects (a.k.a.
quasiparticles or anyons) in the form of neighboring
plaquettes with ≠1 eigenvalues of the plaquette sta-
bilizers. Similarly a ‡z error corresponds to a phase-
flip error which gives rise to a pair of neighboring ≠1
defects on two vertices. A ‡y = i‡x‡z simultane-
ously creates both types of defects. A natural error
process is to assume that X, Y, Z errors occur with
equal probability, so called depolarizing noise. This
however requires to treat correlations between X and
Z errors and the simpler uncorrelated noise model
is often used, which is what we will consider in this
work, focusing on bit-flip errors and corresponding
plaquette defects. Here X and Z errors occur inde-
pendently with probability p whereas Y = XZ errors
occur with probability p2. Correcting independent X
and Z errors is completely equivalent (with defects
either on plaquettes or on vertices) and it is therefore
su�cient to formulate an error correcting algorithm
for one type of error. (For actual realizations of the
physical qubits the error process may in fact be inter-
mediate between these two cases[45].) Regardless of
noise model and type of error an important aspect of
the error correction of a stabilizer formalism is that
the entanglement of the logical qubit states or its ex-
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code distance d

To derive the ground state consider first the pla-
quette operator in the ‡z-basis; clearly a ground state
must have an even number of each spin-up and spin-
down on every plaquette to be a +1 eigenstate of each
plaquette operator. Let’s consider the state with all
spin-up | øøø · · · Í; acting with a vertex operator on
this flips all the spins around the vertex (see Fig. 1b)
giving a state still in ground state sector of the plaque-
tte operators as an even number of spins are flipped
on the plaquettes surrounding the vertex. (As is also
clear from the fact that all the stabilizer operators
commute.) The +1 eigenstate of that particular ver-
tex operator is thus the symmetric superposition of
the two states. A convenient way to express the op-
eration of one or several adjacent vertex operators is
in turns of loop traversing the flipped spins. Such
loops (fig. 1b-c) generated from products of vertex
operators will always be topologically trivial loops
on the surface of the torus since they are just con-
structed by merging the local loop corresponding to a
single vertex operator. Successively acting with ver-
tex operators on the states generated from the orig-
inal | øøø · · · Í we realize that the ground state is
simply the symmetric superposition of all states that
are generated from this by acting with (trivial) loops
|GS0Í =

q
iœall trivial loops loopi| øøø · · · Í.

To generate the other ground states we consider
the operators X1 and X2 (Fig. 1d) which are prod-
ucts of ‡x corresponding to the two non-trivial loops
that wind the torus. (Deformations of these loops
just correspond to multiplication by trivial loops and
is thus inconsequential.) Correspondingly there are
non-trivial loops of ‡z operators Z1 and Z2. The
four ground states are thus the topologically distinct
states {|GS0Í, X1|GS0Í, X2|GS0Í, X2X1|GS0Í} distin-
guished by their eigenvalues of Z1 and Z2 being ±1.
For a torus with d ◊ d plaquettes there are 2d2 physi-
cal qubits and the code distance, i.e. minimum length
of any logical operator (Xi or Zi), is d.

2.1.1 Error correction
Errors in the physical qubits will take the state out of
the ground state sector and thereby mask the encoded
state. The task of the error correction procedure is
to move the system back to the ground state sector
without inadvertently performing a logical operation
to change the logical qubit state. A ‡x error on a
physical qubit corresponds to a bit-flip error. On the
toric code this gives rise to a pair of defects (a.k.a.
quasiparticles or anyons) in the form of neighboring
plaquettes with ≠1 eigenvalues of the plaquette stabi-
lizers. Similarly a ‡z error corresponds to a phase-flip
error which gives rise to a pair of neighboring ≠1 de-
fects on two vertices. A ‡y = i‡x‡z simultaneously
creates both types of defects. A natural error pro-
cess is to assume that x, y, z errors occur with equal
probability, so called depolarizing or correlated noise.
This however requires to treat correlations between x

Figure 2: Bit-flip errors (red ’X’) and possible error correc-
tion bit-flips (blue ’X’). (a) Two neighboring errors and the
corresponding error chain (red line) and syndrome (red dots).
(b) Visualized in terms of the syndrome with error chain and
two possible correction chains (blue) as expressed explicitly in
(c) and (d). The error chain plus the correction chain in (d)
constitutes a non-trivial loop and a logical bit-flip operation
(as in Figure 1d), thus a failed error correction, in contrast
to the trivial loop in (c).

and z errors and the simpler uncorrelated noise model
is often used, which is what we will consider in this
work, focusing on bit-flip errors and corresponding
plaquette defects. Here x and z errors occur indepen-
dently with probability p whereas y errors occur with
probability p2. Correcting independent x and z errors
is completely equivalent (with defects either on pla-
quettes or on vertices) and it is therefore su�cient to
formulate an error correcting algorithm for one type
of error. (For actual realizations of the physical qubits
the error process is in fact expected to be intermedi-
ate between these two cases[38].) Regardless of noise
model and type of error an important aspect of the
error correction of a stabilizer formalism is that the
microscopic entanglement of the logical cubit states
or its excitations does not have to be considered ex-
plicitly as errors act equivalently on all states that
belong to the same stabilizer sector.

A crucial aspect of quantum error correction is that
the actual bit-flip errors cannot be measured without
collapsing the state into a partial basis and destroying
the qubit. What can be measured without destroying
the logical qubit are the stabilizers, i.e. for bit-flip
error the ±1 eigenvalue of the plaquette operators.
The complete set of incorrect (≠1) plaquettes makes
up the syndrome of the state. The complete set of
bit-flip errors will produce a unique syndrome as the
end-points of strings of bit-flip errors. The converse
however is not true, which is what makes the task
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Minimum Weight Perfect Matching Low-p fail rate for bit-flip errors 
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A Small error rate
As discussed by Fowler et al.[22, 40] the likely oper-
ating regime of surface code is in the limit of small
error rate p π 1. In addition, in the limit p æ 0 we
can derive an exact expression for the rate of logical
failure under the assumption of MWPM error correc-
tion, thus providing a solid benchmark for our RL
algorithm. Such expressions were derived for the sur-
face code in [40] and here we derive the corresponding
expression for bit-flip errors in the toric code.

Consider first the case of code distance d with d œ
odd, which is what we have assumed in the present
work. (Using odd d gives an additional simplification
of the Q-learning set-up from the fact that any pla-
quette can be considered the center of the lattice.) As
a reminder, the error formulation we use is that ev-
ery physical qubit has a probability p of bit-flip error,
and probability 1 ≠ p of no error. (In contrast to [40]
we don’t consider ‡y errors, which would give rise to
both bit-flip and phase-flip errors.) For very low p,
we only need consider states with the minimal num-
ber of bit-flip errors that may cause a logical failure.
One can readily be convinced (from a few examples)
that such states are ones where a number Ád/2Ë (e.g.
Á7/2Ë = 4) of errors are placed along the path of the
shortest possible non-trivial (logical) loops. The lat-
ter are d sites long, and on the torus there are 2d
such loops. For such a state MWPM will always fail,
because it will provide a correction string which has
Âd/2Ê bit-flips rather than the Ád/2Ë flips needed to

make a successful error correction. The former correc-
tion string, together with the initial error string, will
sum to one of the non-trivial (shortest length) loops
and give rise to a logical bit-flip. The fail-rate pL, i.e.
the fraction of logical fails of all generated syndromes,
is thus to lowest order in p and for odd d given by

pL = 2d

3
d

Ád/2Ë

4
pÁd/2Ë . (4)

Here 2d is the number of shortest non-trivial loops,!
d

Ád/2Ë
"
is the number of ways of placing the errors on

such a loop, and pÁd/2Ë is the lowest order term in the
probability (pÁd/2Ë(1 ≠ p)2d

2≠Ád/2Ë) of any particular
state with Ád/2Ë errors.
Considering d even (for reference), the correspond-

ing minimal fail scenario has d/2 errors on a length
d loop. Here the MWPM has a 50% chance of con-
structing either a non-trivial or trivial loop, thus giv-
ing the asymptotic fail rate pL = d

!
d

d/2
"
pd/2.

B Network architecture and training
parameters
The reinforcement learning agent makes use of a deep
convolutional neural network to approximate the Q
values for the possible actions of each defect. The
network (see Fig. 3) consists of an input layer which
is d◊d matrix corresponding to a perspective (binary
input, 0 or 1, with 1 corresponding to a defect), and a
convolutional layer followed by several fully-connected
layers and an output layer consisting of four neurons,
representing each of the four possible actions. All lay-
ers have ReLU activation functions except the output
layer which has simple linear activation.

Table 1: Network architecture d=5. FC=Fully connected
# Type Size # parameters
0 Input 5x5
1 Conv. 512 filters; 3x3 size;

2-2 stride 5 120
2 FC 256 neurons 524 544
3 FC 128 neurons 32 896
4 FC 64 neurons 8 256
5 FC 32 neurons 2 080
6 FC (out) 4 neurons 132

573 028

The network architecture is summarized in Table
1 and 2. We also included explicitly a count of the
number of parameters (weights and biases) to em-
phasize the huge reduction compared to tabulating

the Q-function. The latter requires of the order
!

d
2

NS

"

entries, for Ns defects, where Ns will also vary as the
syndrome is reduced, with initially NS ≥ 4pd2 as each

10

MWPM asymptotic (lowest order in p) fail rate is:
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the problem is enforced by including all four rotated
versions of the same tuple.) The training target value
for the Q-network is given by

yi = ri + “ max
P ÕœOÕ

i;aÕ
Q(P Õ, aÕ, ◊T ) , (3)

where “ is the discount factor and where the more
slowly evolving target network parametrized by ◊T

is used to predict future cumulative award. After
this, gradient descent is used to minimize the dis-
crepancy between the targets of the sample and the
Q network predictions for it, upgrading the network
parameters schematically according to ≠Ò◊

q
i
(yi ≠

Q(Pi, ai, ◊))2 . A new training sequence is then
started, and with some specified rate, the weights of
the target network, ◊T , are synchronized with the Q
network ◊. A pseudocode description of the procedure
is presented in algorithm 1 and an illustration of the
di↵erent components and procedures of the training
algorithm and how they relate to each other is found
in Figure 5.

Algorithm 1 Training the reinforcement learning
agent decoder

1: while syndrome defects remain do

2: Get observation O from syndrome Û See
figure 4

3: Calculate Q(P, a, ◊) using Q-network for all
perspectives P œ O.

4: Choose which defect e to move with action a
using ‘-greedy policy

5: P Ω perspective of defect e
6: Perform action a on defect e
7: r Ω reward from taking action a on defect e
8: OÕ Ω observation corresponding to new syn-

drome
9: Store transition tuple T = (P, a, r, OÕ) in mem-

ory bu�er
10: Draw a random sample of transition tuples
11: for each transition tuple Ti in sample do

12: Construct targets yi using target network
◊T and reward ri according to Eqn. 3.

13: end for

14: Update Q-network parameters ◊
15: Every n iterations, synchronize the target net-

work with network, setting ◊T = ◊
16: end while

4 Result
Data sets with a fixed error rate of 10% were gen-
erated to train the agent to operate on a code of a
specified size. The syndromes in a data set is fed one
at a time to the agent, which operates on it until no
errors remain. The data sets also contain information
about the physical qubit configuration (the hidden
state) of the lattice, which (as discussed in section

Figure 6: Error correction success rate ps of the converged
agents versus bit-flip error rate p, for system size d = 3, 5, 7,
and compared to the corresponding results using MWPM
(lines). (The MWPM decoder for d = 30 is included as a
reference for the approach to large d.)

3) is used to check the success rate of the decoder.
This is compared to the performance of the MWPM
decoder on the same syndromes [46]. The operation of
the trained decoder is similar to the cellular automa-
ton decoders[33, 34] in the sense of providing step by
step actions based on the current state of the syn-
drome. This also means that it could be implemented
in parallel with the error generation process by con-
tinuously adapting to the introduction of new errors.

The proficiency of the well converged agents are
shown in figures 6 and 7 as compared to the MWPM
performance. Given our specified reward scheme,
which corresponds to using as few operations as pos-
sible, we achieve near optimal results with a perfor-
mance which is close to that of the MWPM decoder.
For small error rates pL æ 0 it is possible to de-
rive an exact expression for the MWPM fail rate pL

(see Appendix A and [25, 47]) by explicitly identifying
the dominant type of error string. We have checked
explicitly that our Q-network agent is equivalent to
MWPM for these error strings and thus gives the same
asymptotic performance.

For larger system size d = 9 we have only been
partially successful, with good performance for small
error rates, but sub-MWPM performance for larger
error rates. Given the exponential growth of the state
space this is perhaps not surprising, but by scaling
up the hardware and the corresponding size of the
manageable Q-network we anticipate that larger code
distances would be achievable within the present for-
malism.

As a demonstration of the operation of the trained
agent and the corresponding Q-network we present
in Figure 8 the action values Q(S, a) for two di↵er-
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Efficient Markov chain Monte Carlo algorithm for the surface code
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Minimum-weight perfect matching (MWPM) has been the primary classical algorithm for error correction
in the surface code, since it is of low runtime complexity and achieves relatively low logical error rates
[Phys. Rev. Lett. 108, 180501 (2012)]. A Markov chain Monte Carlo (MCMC) algorithm [Phys. Rev. Lett.
109 , 160503 (2012)] is able to achieve lower logical error rates and higher thresholds than MWPM, but requires
a classical runtime complexity, which is super-polynomial in L, the linear size of the code. In this work we
present an MCMC algorithm that achieves significantly lower logical error rates than MWPM at the cost of a
runtime complexity increased by a factor O(L2). This advantage is due to taking correlations between bit- and
phase-flip errors (as they appear, for example, in depolarizing noise) as well as entropic factors (i.e., the numbers
of likely error paths in different equivalence classes) into account. For depolarizing noise with error rate p,
we present an efficient algorithm for which the logical error rate is suppressed as O((p/3)L/2) for p → 0—an
exponential improvement over all previously existing efficient algorithms. Our algorithm allows for tradeoffs
between runtime and achieved logical error rates as well as for parallelization, and can be also used for correction
in the case of imperfect stabilizer measurements.
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I. INTRODUCTION

An important primitive for the processing of quantum
information is the ability to store it despite the constant
corruptive influence of the external environment on the applied
hardware and imperfections of the latter. While one approach
seeks to achieve this by constructing a self-correcting quantum
memory (see Ref. [1] for a recent review), an alternative
possibility is to dynamically protect the stored quantum
information by constantly pumping entropy out of the system.
Topological quantum error correction codes [2,3] store one
logical qubit in a large number of physical qubits in a way
which guarantees that a sufficiently low density of errors on the
physical qubits can be detected and undone, without affecting
the stored logical qubit. Most promising is the surface code
[4– 7], which requires only local four-qubit parity operators
to be measured. While proposals for direct measurement of
such operators exist [8– 10], most of the literature focuses
on time-dependent interactions between the four qubits and
an auxiliary qubit, to be performed and to finally read the
measurement result of the auxiliary qubit. See Ref. [11] for a
recent review.

In order to decode the syndrome information, i.e., use the
outcomes of all four-qubit measurements to find out how to
optimally perform error correction, a classical computation is
necessary. This classical computation is not trivial, and brute-
force approaches are infeasible. Decoding algorithms based on
renormalization techniques [12] or minimum-weight perfect
matching (MWPM) [13], have a runtime complexity O(L2)
and can be parallelized to O(L0) (neglecting logarithms),
where L is the linear size of the code. As these algorithms are
approximative, the logical error rates achievable with them fall
short of those theoretically achievable by brute-force decoding.
A Markov chain Monte Carlo (MCMC) algorithm [14] can
cope with higher physical error rates than the two mentioned
algorithms but has super-polynomial (yet subexponential)
runtime complexity. In this work, we present an efficient
MCMC decoding algorithm that allows logical error rates

lower than those achievable by means of MWPM [15] to
be achieved. Equivalently, a smaller code size is required to
achieve a certain target logical error rate. Our algorithm allows
for tradeoffs between runtime and achieved logical error rate.
If we define the runtime of our algorithm to be the minimal
computation time such that the achieved logical error rate is
lower than the one achievable by means of MWPM, we find it
to be O(L4).

Furthermore, we describe a method for achieving logical
error rates which, in the limit of a vanishing error rate p → 0,
are exponentially smaller than those of previous methods.
After completion of this work, a method for achieving the same
asymptotic error suppression with optimal runtime complexity
has been described in Ref. [16].

In summary, in comparison to alternative algorithms
[12,13], our algorithm allows for lower quantum information
error rates and smaller code sizes at the cost of a (polynomially)
higher classical runtime complexity. Given the current state
of the art of quantum and classical information processing,
shifting requirements from quantum to classical seems de-
sirable. Our algorithm is generalizable to the (realistic) case
of imperfect stabilizer measurements, although we restrict
numerical simulations in this work to the case of perfect
measurements for simplicity.

II. ERROR CORRECTION IN SURFACE CODES

Stabilizer operators are, in the context of the surface code,
tensor products of σ x or σ z operators (see Fig. 1), which are
required to yield a +1 eigenvalue when applied to the quantum
state stored in the code. Eigenvalues −1 are treated as errors
and interpreted as the presence of an anyon. A surface code of
size L has nstab = 2L(L −1) (3- and 4-qubit) stabilizers. Since
all stabilizers commute, they can be measured simultaneously
and hence the presence of anyons can be detected. Any Pauli
operator σ x, σ y, or σ z applied to a data qubit creates at least
one anyon as it anticommutes with at least one stabilizer. We
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Abstract—Topological quantum error-correcting codes are de-
fined by geometrically local checks on a two-dimensional lattice of
quantum bits (qubits), making them particularly well suited for
fault-tolerant quantum information processing. Here, we present
a decoding algorithm for topological codes that is faster than
previously known algorithms and applies to a wider class of topo-
logical codes. Our algorithm makes use of two methods inspired
from statistical physics: renormalization groups and mean-field
approximations. First, the topological code is approximated by
a concatenated block code that can be efficiently decoded. To
improve this approximation, additional consistency conditions
are imposed between the blocks, and are solved by a belief
propagation algorithm.

I. INTRODUCTION

Topological quantum error-correcting codes (TQECC) [1],
[2], [3] are defined on two-dimensional lattices of qubits with
geometrically local parity checks. Thus, they are a form of
quantum LDPC codes with an additional locality requirement
imposed to their Tanner graph. To appreciate the importance
of this feature, recall that in quantum mechanics, measuring
a qubit alters its state. To detect errors, it is not possible
to measure each qubit separately and verify that they satisfy
all the check conditions—like it is done classically—without
destroying the encoded information. Instead, it is necessary to
perform a collective measurement on all the qubits involved
in a given check, which requires having the qubits physically
interact with each other, or with a mediator system. Thus,
having local checks is an extremely important feature that
explains—together with the possibility of implementing some
gates topologically [2], [4], [5], [6], [7]—the growing interest
in topological quantum codes.

The prominent example of TQECC is Kitaev’s toric code
family [1], [2] that we define below. For these codes, defined
on a toric qubit lattice, errors in the same homology class have
the same effect on the encoded information. Thus, maximum-
likelihood decoding consists in identifying the lowest weight
homology class of equivalent errors. Previously, a decoding
algorithm based on perfect matching [8] was proposed which
identifies the lowest weight error, ignoring the equivalence
relation set by homology [1]. The complexity of this algorithm
is quite prohibitive, O(`6) where ` is the linear size of the
lattice. Other topological codes [3] had no known efficient
decoding algorithm.

In [9] we presented a new decoding algorithm for TQECC.
The essential idea of this algorithm borrows from the renor-
malization group method of statistical physics. Intuitively, we

can think of a TQECC on a lattice of linear size ` = 2c

as consisting of c levels of concatenation of a TQECC on
a lattice of linear size 2. Concatenated quantum codes can
be decoded efficiently by a recursive algorithm [10]. Starting
from an error model characterizing the channel, each 2 ⇥ 2
lattice is soft-decoded, producing an effective “renormalized”
error model on its logical qubits. This error model is passed
to the next level of concatenation, and we recurse. The
recursion ends after c = log ` iterations, where it outputs a
probability vector describing the encoded information. Each
round involves decoding at most `2 constant size TQECC,
so the overall complexity is O(`2 log `) and can easily be
parallelized for a total runtime of O(log `).

Because TQECC are not truly concatenated codes, the intu-
ition explained above cannot be turned into a rigorous method,
and some approximations are necessary. In this paper, we give
a detailed presentation of the approximation techniques used
in Ref. [9] and present some results obtained from our method.

II. KITAEV’S TORIC CODE

The state of a collection of n qubits can be specified by a
vector | i in the complex Hilbert space (C2)⌦n = C2 ⌦C2 ⌦
. . . ⌦ C2. Each vector space C2 in this tensor decomposition
is associated to a qubit. A code on n qubits is a subspace
of (C2)⌦n. For Kitaev’s code—like all stabilizer codes—this
subspace is specified by a set of mutually commuting operators
that play a role similar to the rows of a parity-check matrix.

To define these operators, it is convenient to display the
qubits on a regular square lattice with periodic boundary
conditions, i.e. with the topology of a torus. There is one
qubit on each edge of the lattice, for a total of n = 2`2 qubits
for a ` ⇥ ` lattice. For each site s (vertex) of the lattice, we
define a site operator As =

N
e2s Xe and for each plaquette

p (site of the dual lattice), we define a plaquette operator
Bp =

N
e2p Ze. These definitions use the Pauli matrices

X =

✓
0 1
1 0

◆
, Y =

✓
0 �i
i 0

◆
, and Z =

✓
1 0
0 �1

◆
,

and we use Xe to denote the Pauli operator X acting on the
qubit located on edge e, i.e. Xe = I ⌦ I ⌦ . . . ⌦ X ⌦ . . . ⌦ I
where X appears at position e and I denotes the 2⇥2 identity
matrix. The notation e 2 s denotes the set of edges e adjacent
to site s, and similarly for v 2 p.

Because ZX = iY , the Pauli operators Xe and Ze,
e = 1, . . . , n form a group under multiplication, the Pauli
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Neural Decoder for Topological Codes
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We present an algorithm for error correction in topological codes that exploits modern machine learning
techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann machine,
of the type extensively used in deep learning. We provide a general prescription for the training of the
network and a decoding strategy that is applicable to a wide variety of stabilizer codes with very little
specialization. We demonstrate the neural decoder numerically on the well-known two-dimensional toric
code with phase-flip errors.
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Introduction.—Much of the success of modern machine
learning stems from the flexibility of a given neural network
architecture to be employed for a multitude of different tasks.
This generalizability means that neural networks can have
the ability to infer structure from vastly different data sets
with only a change in optimal hyperparameters. For this
purpose, the machine learning community has developed a
set of standard tools, such as fully connected feed forward
networks [1] and Boltzmann machines [2]. Specializations
of these underlie many of the more advanced algorithms,
including convolutional networks [3] and deep learning
[4,5], encountered in real-world applications such as image
or speech recognition [6].
These machine learning techniques may be harnessed for

a multitude of complex tasks in science and engineering
[7–17]. An important application lies in quantum computing.
For a quantum logic operation to succeed, noise sources that
lead to decoherence in a qubit must be mitigated. This can be
done through some type of quantum error correction—a
process where the logical state of a qubit is encoded
redundantly so that errors can be corrected before they
corrupt it [18]. A leading candidate for this is the imple-
mentation of fault-tolerant hardware through surface codes,
where a logical qubit is stored as a topological state of an
array of physical qubits [19]. Random errors in the states of
the physical qubits can be corrected before they proliferate
and destroy the logical state. The quantum error correction
protocols that perform this correction are termed “decoders,”
and must be implemented by classical algorithms running on
conventional computers [20,21].
In this Letter we demonstrate how one of the simplest

stochastic neural networks for unsupervised learning, the
restricted Boltzmann machine [22], can be used to con-
struct a general error-correction protocol for stabilizer
codes. Give a syndrome, defined by a measurement of
the end points of an (unknown) chain of physical qubit
errors, we use our Boltzmann machine to devise a protocol
with the goal of correcting errors without corrupting the

logical bit. Our decoder works for generic degenerate
stabilizer codes that have a probabilistic relation between
the syndrome and errors, which does not have to be a priori
known. Importantly, it is very simple to implement, requiring
no specialization regarding code locality, dimension, or
structure. We test our decoder numerically on a simple
two-dimensional surface code with phase-flip errors.
The 2D toric code.—Most topological codes can be

described in terms of the stabilizer formalism [23]. A
stabilizer code is a particular class of error-correcting code
characterized by a protected subspace C defined by a
stabilizer group S. The simplest example is the 2D toric
code, first introduced by Kitaev [24]. Here, the quantum
information is encoded into the homological degrees of
freedom, with topological invariance given by the first
homology group [25]. The code features N qubits placed
on the links of an L × L square lattice embedded on a
torus. The stabilizer group is S ¼ fẐp; X̂vg, where the
plaquette and vertex stabilizers are defined respectively as
Ẑp ¼ ⊗

l∈p
σ̂zl and X̂v ¼ ⊗

l∈v
σ̂xl with σ̂zl and σ̂xl acting,

respectively, on the links contained in the plaquette p
and the links connected to the vertex v. There are two
encoded logical qubits, manipulated by logical operators
Ẑð1;2Þ
L as σ̂z acting on the noncontractible loops on the real

lattice and logical X̂ð1;2Þ
L as the noncontractible loops on the

dual lattice (Fig. 1).
Given a reference state jψ0i ∈C, let us consider the

simple phase-flip channel described by a Pauli operator
where σ̂z is applied to each qubit with probability perr. This
operator can be efficiently described by a mapping between
the links and Z2, called an error chain e, whose boundary is
called a syndrome SðeÞ. In a experimental implementation,
only the syndrome (and not the error chain) can be
measured. Error correction (decoding) consists of applying
a recovery operator whose chain r generates the same
syndrome, SðeÞ ¼ SðrÞ. The recovery succeeds only if the
combined operation is described by a cycle (i.e., a chain
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Quantum error correction is widely thought to be the key to fault-tolerant quantum computation.
However, determining the most suited encoding for unknown error channels or specific laboratory
setups is highly challenging. Here, we present a reinforcement learning framework for optimizing
and fault-tolerantly adapting quantum error correction codes. We consider a reinforcement learning
agent tasked with modifying a quantum memory until a desired logical error rate is reached. Using
e�cient simulations of a surface code quantum memory with about 70 physical qubits, we demon-
strate that such a reinforcement learning agent can determine near-optimal solutions, in terms of
the number of physical qubits, for various error models of interest. Moreover, we show that agents
trained on one task are able to transfer their experience to similar tasks. This ability for trans-
fer learning showcases the inherent strengths of reinforcement learning and the applicability of our
approach for optimization both in o↵-line simulations and on-line under laboratory conditions.

I. INTRODUCTION

Quantum computers hold the promise to provide ad-
vantages over their classical counterparts for certain
classes of problems [1–3]. Yet, such advantages may be
fragile and can quickly disappear in the presence of noise,
losses, and decoherence. Provided the noise is below a
certain threshold, these di�culties can in principle be
overcome by means of fault-tolerant quantum compu-
tation [1, 4]. There, the approach to protect quantum
information from detrimental e↵ects is to encode each
logical qubit into a number of physical qubits. This is
done in such a way that physical-level errors can be de-
tected, and corrected, without a↵ecting the logical level,
provided they are su�ciently infrequent [5]. Quantum er-
ror correction (QEC) codes thus allow for devices —usu-
ally referred to as quantum memories [6] —that can po-
tentially store quantum information for arbitrarily long
times if su�ciently many physical qubits are available.
However, physical qubits will be a scarce resource in near-
term quantum devices. It is hence desirable to make use
of QEC codes that are resource-e�cient given a targeted
logical error rate. Yet, while some types of errors can
be straightforwardly identified and corrected, determin-
ing the most suitable QEC strategy for arbitrary noise is
a complicated optimization problem.

Here, we consider a scenario where certain QEC codes
can be implemented on a quantum memory that is sub-
ject to arbitrary noise. Given the capacity to estimate
the logical error rate, our objective is to provide an auto-
mated scheme that determines the most economical code
that achieves a rate below a desired threshold. A key
contributing factor to the complexity of this task is the

⇤
hendrik.poulsen-nautrup@uibk.ac.at

diversity of the encountered environmental noise and the
corresponding error models. That is, noise may not be
independent and identically distributed, may be highly
correlated or even utterly unknown in specific realistic
settings [7, 8]. Besides possible correlated errors, the
error model might change over time, or some qubits in
the architecture might be more prone to errors than oth-
ers. Moreover, even for a given noise model, the optimal
choice of QEC code still depends on many parameters
such as the minimum distance, the targeted block error
rate, or the computational cost of the decoder [1]. Deter-
mining these parameters requires considerable computa-
tional resources, e.g., the computation of the minimum
distance of a linear code is NP-hard [9]. At the same
time, nascent quantum computing devices are extremely
sensitive to noise while having only very few qubits avail-
able to correct errors.

For the problem of finding optimized QEC strategies,
adaptive machine learning [10] approaches may succeed
where brute force searches fail. For example, in Ref. [11],
neural networks were used to determine sequences of
quantum gates and measurements to correct errors. In
this setting, the algorithm is required to search the whole
space of encoding quantum circuits for an optimal QEC
strategy. In fact, the space of all possible QEC strategies
that the algorithm explores is so vast, that scaling in-
evitably becomes an issue. While this work demonstrates
a successful strategy on up to 4 physical qubits subject
to uncorrelated bit-flip errors, significant advances would
be needed to generalize this to larger, potentially vary-
ing numbers of physical qubits and more realistic noise.
In order to deal with such a general scenario, we follow
a di↵erent approach. We first reduce the complexity of
the problem of optimizing QEC strategies by separating
two optimization tasks: code selection and error decod-
ing. In this way, the QEC code can be optimized using a
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Topological error correcting codes, and particularly the surface code, currently provide the most feasible
roadmap towards large-scale fault-tolerant quantum computation. As such, obtaining fast and flexible decoding
algorithms for these codes, within the experimentally relevant context of faulty syndrome measurements, is of
critical importance. In this work, we show that the problem of decoding such codes, in the full fault-tolerant
setting, can be naturally reformulated as a process of repeated interactions between a decoding agent and a code
environment, to which the machinery of reinforcement learning can be applied to obtain decoding agents. As a
demonstration, by using deepQ learning, we obtain fast decoding agents for the surface code, for a variety of
noise-models.

I. INTRODUCTION

In order to implement large scale quantum computations
it is necessary to be able to store and manipulate quantum
information in a manner that is robust to the unavoidable errors
introduced through interaction of the physical qubits with a
noisy environment. The known strategy for achieving such
robustness is to encode a single logical qubit into the state
of many physical qubits, via a quantum error correcting code,
from which it is possible to actively diagnose and correct errors
that may occur [1, 2]. While many quantum error correcting
codes exist, topological quantum codes [1–8], in which only
local operations are required to diagnose and correct errors,
are of particular interest as a result of their experimental fea-
sibility [9–15]. In particular, the surface code has emerged as
an especially promising candidate for large-scale fault-tolerant
quantum computation, due to the combination of its compar-
atively low overhead and locality requirements, coupled with
the availability of convenient strategies for the implementation
of all required logical gates [16, 17]. In fact, current road maps
towards the realization of robust quantum computing have
identified surface code based approaches as the most feasible
methodology for achieving this goal [18].

However, the known realistic topological quantum error
correcting codes, including the surface code, are not self-
correcting, and are therefore not robust to natural thermal noise.
For this reason one has to actively diagnose and correct for
errors, and as such, in any code-based strategy for fault-tolerant
quantum computation decoding algorithms play a critical role.
At a high level, these algorithms take as input the outcomes of
syndrome measurements (which provide a diagnosis of errors
that have occurred on the physical qubits), and provide as out-
put a suggestion of corrections for any errors that may have
occurred during the computation. In practice, these decoding
algorithms have to be extremely fast - in particular, one has
to be able to decode faster than the rate at which errors occur.
As such, the development of decoding algorithms constitutes a
serious bottleneck in the realization of fault-tolerant quantum
computers and are key to gaining an understanding of quantum
computing in realistic regimes.

It is particularly important to note that in any physically real-

istic setting, the required syndrome measurements are obtained
via small quantum circuits, and are therefore also generically
faulty. For this reason, while the setting of perfect syndrome
measurements provides a paradigmatic test-bed for the devel-
opment of decoding algorithms, any decoding algorithm which
aims to be experimentally useful must necessarily be capable
of dealing with such faulty syndrome measurements. Addition-
ally, such algorithms should also be capable of dealing with
experimentally relevant noise models, as well as be fast enough
to not present a bottleneck to the execution of computations,
even as the size of the system (i.e. the code distance) grows.

As of yet, it is precisely the development of decoders applica-
ble to the fault-tolerant setting that constitutes a particular chal-
lenge. However, due to the importance of decoding algorithms
for fault-tolerant quantum computation, several approaches
have been developed, each of which tries to satisfy as many of
the experimentally required criteria as possible. Perhaps most
prominent are algorithms based on minimum-weight perfect
matching subroutines [19], although alternative approaches
based on techniques such as the renormalization group [20]
and locally operating cellular automata [21–23] have also been
put forward. These algorithms solve the problem in principle,
but may well be too slow in realistic settings.

Recently, techniques from machine learning have begun to
find application in diverse areas of quantum physics - such as in
the efficient representation of many-body quantum states [24–
26], the identification of phase transitions [27–31], and the
autonomous design of novel experimental set-ups [32, 33] -
and in an attempt to tackle the issue of fast decoding various
neural-network based decoders have also been proposed [34–
41]. In particular, previously proposed neural network decoders
promise extremely fast decoding times [37], flexibility with
respect to the underlying code and noise model [37–40] and
the potential to scale to large code distances [40, 41]. How-
ever, despite this diversity of proposed decoding algorithms,
and the clear potential of machine learning based approaches,
there is as of yet no algorithm or technique which clearly sat-
isfies all the required experimental criteria listed above. As
such, there remains room for improvement and new techniques,
particularly within the fault-tolerant setting.

Simultaneously, the last few years have also seen impressive
advances in the development of deep reinforcement learning al-
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We still do not have the perfect decoders for topolog-
ical codes that can satisfy all needs of di↵erent exper-
imental setups. Recently, a few neural network based
decoders have been studied, with the motivation that
they can adapt to a wide range of noise models, and can
easily run on dedicated chips without a full-fledged com-
puter. The later feature might lead to fast speed and the
ability to operate in low temperature. However, a ques-
tion which has not been addressed in previous works is
whether neural network decoders can handle 2D topolog-
ical codes with large distances. In this work, we provide
a positive answer for the toric code [1]. The structure of
our neural network decoder is inspired by the renormal-
ization group decoder [2, 3]. With a fairly strict policy on
training time, when the bit-flip error rate is lower than
9%, the neural network decoder performs better when
code distance increases. With a less strict policy, we find
it is not hard for the neural decoder to achieve a per-
formance close to the minimum-weight perfect matching
algorithm. The numerical simulation is done up to code
distance d = 64. Last but not least, we describe and an-
alyze a few failed approaches. They guide us to the final
design of our neural decoder, but also serve as a cau-
tion when we gauge the versatility of stock deep neural
networks.

I. INTRODUCTION

Before we can make the components of quantum com-
puters as reliable as those of classical computers, we will
need quantum error correction so that we can scale up
the computation. The surface code and other topologi-
cal codes are popular choices for several qubit architec-
tures because of its high threshold and low requirement
on connectivity between qubits. However, several good
performing decoders have trouble to do real-time decod-
ing for qubits with fast error-correction cycles, such as su-
perconducting qubits. Moreover, as we are getting closer
to the point where small size surface code can be im-
plemented in the lab, it is desirable that the decoders
can adapt to the noise models from the experimental se-
tups. These considerations motivate the study of de-
coders based on neural networks, which we will refer to
as neural decoders, for surface code and other topologi-
cal codes [4–11]. One question has not been addressed so
far is whether neural networks can also be used for de-
coding 2D topological codes on a large lattice with good

⇤ xiaotong.ni@gmail.com

performance. In this work, we will focus on answering
this question for the toric code. While it is the simplest
topological code, it shares many common features with
others, which makes it a good test platform.
To design a neural decoder for large toric codes, a nat-

ural first step is to use convolutional neural networks
(CNNs) [12, 13], as the toric code and CNNs are both
translational-invariant on a 2D-lattice. Compared to nor-
mal neural networks, the number of parameters in CNNs
only scale with the depth of networks. This gives an
intuition that the training of the CNNs should remain
feasible for the lattice size of concern in the near future.
We want the decoder to be able to adapt to experimental
noise, which we should assume to be constantly changing
and thus the data for calibration is limited. The struc-
ture of CNNs allow us to have a great control of how
many parameters to be re-trained during calibration so
that we can avoid over-fitting (see Appendix E for an
example).
Interestingly, the renormalization group (RG) de-

coder [2, 3] for toric code already has a structure very
similar to the CNNs used in image classification. Both of
them try to keep the information needed for the output
intact while reducing the size of the lattice, by alternating
between local computation and coarse-grain steps. This
similarity means that we should aim to achieve better or
similar performance with the neural decoder compared
to the RG one. And in case of bad performance, we can
“teach” the neural decoder to use a similar strategy as
the RG decoder. This is indeed how we get a good perfor-
mance in the end. Conceptually, this is similar to imita-
tion learning (see [14] for an overview). Even though we
initialize the neural decoder by mimicking the RG one,
it can have the following advantages:

• It can achieve a better performance than the RG
decoder, as the latter one contains some heuristic
steps. On the other hand, the neural decoder can
be optimized to be a local minimum with respect
to the parameters of the neural network (strictly
speaking, at least the gradient is very small). The
idea of improving belief propagation with neural
networks is also used for decoding classical linear
codes [15].

• It o↵ers an additional way to adapt to experimen-
tal noise models, which is simply training on exper-
imental data.

• The neural decoder can be run on dedicated hard-
ware, thus easily parallelized and can decode mul-
tiple toric code syndromes simultaneously at a high
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A fault-tolerant quantum computation re-

quires an e�cient means to detect and correct

errors that accumulate in encoded quantum in-

formation. In the context of machine learn-

ing, neural networks are a promising new ap-

proach to quantum error correction. Here we

show that a recurrent neural network can be

trained, using only experimentally accessible
data, to detect errors in a widely used topo-

logical code, the surface code, with a perfor-

mance above that of the established minimum-

weight perfect matching (or “blossom”) de-

coder. The performance gain is achieved be-

cause the neural network decoder can detect

correlations between bit-flip (X) and phase-flip

(Z) errors. The machine learning algorithm

adapts to the physical system, hence no noise

model is needed. The long short-term memory

layers of the recurrent neural network main-

tain their performance over a large number of

quantum error correction cycles, making it a

practical decoder for forthcoming experimen-

tal realizations of the surface code.

1 Introduction

A quantum computer needs the help of a powerful
classical computer to overcome the inherent fragility
of entangled qubits. By encoding the quantum in-
formation in a nonlocal way, local errors can be de-
tected and corrected without destroying the entangle-
ment [1, 2]. Since the e�ciency of the quantum error
correction protocol can make the di↵erence between
failure and success of a quantum computation, there
is a major push towards more and more e�cient de-
coders [3]. Topological codes such as the surface code,
which store a logical qubit in the topology of an array
of physical qubits, are particularly attractive because
they combine a favorable performance on small cir-
cuits with scalability to larger circuits [4–9].

In a pioneering work [10], Torlai and Melko have
shown that the data processing power of machine
learning (artificial neural networks [11–13]) can be
harnessed to produce a flexible, adaptive decoding al-

gorithm. A test on a topological code (Kitaev’s toric
code [14]) revealed a performance for phase-flip er-
rors that was comparable to decoders based on the
minimum-weight perfect matching (MWPM or “blos-
som”) algorithm of Edmonds [15–17]. The machine
learning paradigm promises a flexibility that the clas-
sic algorithms lack, both with respect to di↵erent
types of topological codes and with respect to dif-
ferent types of errors.

Several groups are exploring the capabilities of a
neural network decoder [18–20], but existing designs
cannot yet be e�ciently deployed as a decoder in a
surface code architecture [21–23]. Two key features
which are essential for this purpose are 1: The neural
network must have a “memory”, in order to be able
to process repeated cycles of stabilizer measurement
whilst detecting correlations between cycles; and 2:
The network must be able to learn from measured
data, it should not be dependent on the uncertainties
of theoretical modeling.

In this work we design a recurrent neural network
decoder that has both these features, and demon-
strate a performance improvement over a blossom de-
coder in a realistic simulation of a forthcoming error
correction experiment. Our decoder achieves this im-
provement through its ability to detect bit-flip (X)
and phase-flip (Z) errors separately as well as corre-
lations (Y). The blossom decoder treats a Y-error as
a pair of uncorrelated X and Z errors, which explains
the improved performance of the neural network. We
study the performance of the decoder in a simplified
model where the Y-error rate can be adjusted inde-
pendently of the X- and Z-error rates, and measure
the decoder e�ciency in a realistic model (density ma-
trix simulation) of a state-of-the-art 17-qubit surface
code experiment (Surface-17).

The outline of this paper is as follows. In the next
section 2 we summarize the results from the literature
we need on quantum error correction with the surface
code. The design principles of the recurrent neural
network that we will use are presented in Sec. 3, with
particular attention for the need of an internal mem-
ory in an e�cient decoder. This is one key aspect that
di↵erentiates our recurrent network from the feedfor-
ward networks proposed independently [18–20] (see
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Machine learning based decoders:

(non-exhaustive listing)



The Bitter Lesson

Rich Sutton

March 13, 2019

The biggest lesson that can be read from 70 years of AI research is that general methods that
leverage computation are ultimately the most effective, and by a large margin. The ultimate
reason for this is Moore's law, or rather its generalization of continued exponentially falling cost
per unit of computation. Most AI research has been conducted as if the computation available to
the agent were constant (in which case leveraging human knowledge would be one of the only
ways to improve performance) but, over a slightly longer time than a typical research project,
massively more computation inevitably becomes available. Seeking an improvement that makes
a difference in the shorter term, researchers seek to leverage their human knowledge of the
domain, but the only thing that matters in the long run is the leveraging of computation. These
two need not run counter to each other, but in practice they tend to. Time spent on one is time
not spent on the other. There are psychological commitments to investment in one approach or
the other. And the human-knowledge approach tends to complicate methods in ways that make
them less suited to taking advantage of general methods leveraging computation.  There were
many examples of AI researchers' belated learning of this bitter lesson, and it is instructive to
review some of the most prominent.

In computer chess, the methods that defeated the world champion, Kasparov, in 1997, were
based on massive, deep search. At the time, this was looked upon with dismay by the majority
of computer-chess researchers who had pursued methods that leveraged human understanding
of the special structure of chess. When a simpler, search-based approach with special hardware
and software proved vastly more effective, these human-knowledge-based chess researchers
were not good losers. They said that ``brute force" search may have won this time, but it was not
a general strategy, and anyway it was not how people played chess. These researchers wanted
methods based on human input to win and were disappointed when they did not.

A similar pattern of research progress was seen in computer Go, only delayed by a further 20
years. Enormous initial efforts went into avoiding search by taking advantage of human
knowledge, or of the special features of the game, but all those efforts proved irrelevant, or
worse, once search was applied effectively at scale. Also important was the use of learning by
self play to learn a value function (as it was in many other games and even in chess, although
learning did not play a big role in the 1997 program that first beat a world champion). Learning
by self play, and learning in general, is like search in that it enables massive computation to be
brought to bear. Search and learning are the two most important classes of techniques for
utilizing massive amounts of computation in AI research. In computer Go, as in computer chess,
researchers' initial effort was directed towards utilizing human understanding (so that less
search was needed) and only much later was much greater success had by embracing search
and learning.

In speech recognition, there was an early competition, sponsored by DARPA, in the 1970s.
Entrants included a host of special methods that took advantage of human knowledge---
knowledge of words, of phonemes, of the human vocal tract, etc. On the other side were newer
methods that were more statistical in nature and did much more computation, based on hidden
Markov models (HMMs). Again, the statistical methods won out over the human-knowledge-
based methods. This led to a major change in all of natural language processing, gradually over
decades, where statistics and computation came to dominate the field. The recent rise of deep
learning in speech recognition is the most recent step in this consistent direction. Deep learning
methods rely even less on human knowledge, and use even more computation, together with
learning on huge training sets, to produce dramatically better speech recognition systems. As in
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Human-level control through deep reinforcement
learning
Volodymyr Mnih1*, Koray Kavukcuoglu1*, David Silver1*, Andrei A. Rusu1, Joel Veness1, Marc G. Bellemare1, Alex Graves1,
Martin Riedmiller1, Andreas K. Fidjeland1, Georg Ostrovski1, Stig Petersen1, Charles Beattie1, Amir Sadik1, Ioannis Antonoglou1,
Helen King1, Dharshan Kumaran1, Daan Wierstra1, Shane Legg1 & Demis Hassabis1

The theory of reinforcement learning provides a normative account1,
deeply rooted in psychological2 and neuroscientific3 perspectives on
animal behaviour, of how agents may optimize their control of an
environment. To use reinforcement learning successfully in situations
approaching real-world complexity, however, agents are confronted
with a difficult task: they must derive efficient representations of the
environment from high-dimensional sensory inputs, and use these
to generalize past experience to new situations. Remarkably, humans
and other animals seem to solve this problem through a harmonious
combination of reinforcement learning and hierarchical sensory pro-
cessing systems4,5, the former evidenced by a wealth of neural data
revealing notable parallels between the phasic signals emitted by dopa-
minergic neurons and temporal difference reinforcement learning
algorithms3. While reinforcement learning agents have achieved some
successes in a variety of domains6–8, their applicability has previously
been limited to domains in which useful features can be handcrafted,
or to domains with fully observed, low-dimensional state spaces.
Here we use recent advances in training deep neural networks9–11 to
develop a novel artificial agent, termed a deep Q-network, that can
learn successful policies directly from high-dimensional sensory inputs
using end-to-end reinforcement learning. We tested this agent on
the challenging domain of classic Atari 2600 games12. We demon-
strate that the deep Q-network agent, receiving only the pixels and
the game score as inputs, was able to surpass the performance of all
previous algorithms and achieve a level comparable to that of a pro-
fessional human games tester across a set of 49 games, using the same
algorithm, network architecture and hyperparameters. This work
bridges the divide between high-dimensional sensory inputs and
actions, resulting in the first artificial agent that is capable of learn-
ing to excel at a diverse array of challenging tasks.

We set out to create a single algorithm that would be able to develop
a wide range of competencies on a varied range of challenging tasks—a
central goal of general artificial intelligence13 that has eluded previous
efforts8,14,15. To achieve this, we developed a novel agent, a deep Q-network
(DQN), which is able to combine reinforcement learning with a class
of artificial neural network16 known as deep neural networks. Notably,
recent advances in deep neural networks9–11, in which several layers of
nodes are used to build up progressively more abstract representations
of the data, have made it possible for artificial neural networks to learn
concepts such as object categories directly from raw sensory data. We
use one particularly successful architecture, the deep convolutional
network17, which uses hierarchical layers of tiled convolutional filters
to mimic the effects of receptive fields—inspired by Hubel and Wiesel’s
seminal work on feedforward processing in early visual cortex18—thereby
exploiting the local spatial correlations present in images, and building
in robustness to natural transformations such as changes of viewpoint
or scale.

We consider tasks in which the agent interacts with an environment
through a sequence of observations, actions and rewards. The goal of the

agent is to select actions in a fashion that maximizes cumulative future
reward. More formally, we use a deep convolutional neural network to
approximate the optimal action-value function

Q! s,að Þ~ max
p

rtzcrtz1zc2rtz2z . . . jst~s, at~a, p
! "

,

which is the maximum sum of rewards rt discounted by c at each time-
step t, achievable by a behaviour policy p 5 P(ajs), after making an
observation (s) and taking an action (a) (see Methods)19.

Reinforcement learning is known to be unstable or even to diverge
when a nonlinear function approximator such as a neural network is
used to represent the action-value (also known as Q) function20. This
instability has several causes: the correlations present in the sequence
of observations, the fact that small updates to Q may significantly change
the policy and therefore change the data distribution, and the correlations
between the action-values (Q) and the target values rzc max

a0
Q s0, a0ð Þ.

We address these instabilities with a novel variant of Q-learning, which
uses two key ideas. First, we used a biologically inspired mechanism
termed experience replay21–23 that randomizes over the data, thereby
removing correlations in the observation sequence and smoothing over
changes in the data distribution (see below for details). Second, we used
an iterative update that adjusts the action-values (Q) towards target
values that are only periodically updated, thereby reducing correlations
with the target.

While other stable methods exist for training neural networks in the
reinforcement learning setting, such as neural fitted Q-iteration24, these
methods involve the repeated training of networks de novo on hundreds
of iterations. Consequently, these methods, unlike our algorithm, are
too inefficient to be used successfully with large neural networks. We
parameterize an approximate value function Q(s,a;hi) using the deep
convolutional neural network shown in Fig. 1, in which hi are the param-
eters (that is, weights) of the Q-network at iteration i. To perform
experience replay we store the agent’s experiences et 5 (st,at,rt,st 1 1)
at each time-step t in a data set Dt 5 {e1,…,et}. During learning, we
apply Q-learning updates, on samples (or minibatches) of experience
(s,a,r,s9) , U (D), drawn uniformly at random from the pool of stored
samples. The Q-learning update at iteration i uses the following loss
function:

Li hið Þ~ s,a,r,s0ð Þ*U Dð Þ rzc max
a0

Q(s0,a0; h{
i ){Q s,a; hið Þ

# $ 2
" #

in which c is the discount factor determining the agent’s horizon, hi are
the parameters of the Q-network at iteration i and h{

i are the network
parameters used to compute the target at iteration i. The target net-
work parameters h{

i are only updated with the Q-network parameters
(hi) every C steps and are held fixed between individual updates (see
Methods).

To evaluate our DQN agent, we took advantage of the Atari 2600
platform, which offers a diverse array of tasks (n 5 49) designed to be

*These authors contributed equally to this work.
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see Fig. 3, Supplementary Discussion and Extended Data Table 2). In
additional simulations (see Supplementary Discussion and Extended
Data Tables 3 and 4), we demonstrate the importance of the individual
core components of the DQN agent—the replay memory, separate target
Q-network and deep convolutional network architecture—by disabling
them and demonstrating the detrimental effects on performance.

We next examined the representations learned by DQN that under-
pinned the successful performance of the agent in the context of the game
Space Invaders (see Supplementary Video 1 for a demonstration of the
performance of DQN), by using a technique developed for the visual-
ization of high-dimensional data called ‘t-SNE’25 (Fig. 4). As expected,
the t-SNE algorithm tends to map the DQN representation of percep-
tually similar states to nearby points. Interestingly, we also found instances
in which the t-SNE algorithm generated similar embeddings for DQN
representations of states that are close in terms of expected reward but

perceptually dissimilar (Fig. 4, bottom right, top left and middle), con-
sistent with the notion that the network is able to learn representations
that support adaptive behaviour from high-dimensional sensory inputs.
Furthermore, we also show that the representations learned by DQN
are able to generalize to data generated from policies other than its
own—in simulations where we presented as input to the network game
states experienced during human and agent play, recorded the repre-
sentations of the last hidden layer, and visualized the embeddings gen-
erated by the t-SNE algorithm (Extended Data Fig. 1 and Supplementary
Discussion). Extended Data Fig. 2 provides an additional illustration of
how the representations learned by DQN allow it to accurately predict
state and action values.

It is worth noting that the games in which DQN excels are extremely
varied in their nature, from side-scrolling shooters (River Raid) to box-
ing games (Boxing) and three-dimensional car-racing games (Enduro).
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Figure 3 | Comparison of the DQN agent with the best reinforcement
learning methods15 in the literature. The performance of DQN is normalized
with respect to a professional human games tester (that is, 100% level) and
random play (that is, 0% level). Note that the normalized performance of DQN,
expressed as a percentage, is calculated as: 100 3 (DQN score 2 random play
score)/(human score 2 random play score). It can be seen that DQN

outperforms competing methods (also see Extended Data Table 2) in almost all
the games, and performs at a level that is broadly comparable with or superior
to a professional human games tester (that is, operationalized as a level of
75% or above) in the majority of games. Audio output was disabled for both
human players and agents. Error bars indicate s.d. across the 30 evaluation
episodes, starting with different initial conditions.
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Mastering the game of Go without 
human knowledge
David Silver1*, Julian Schrittwieser1*, Karen Simonyan1*, Ioannis Antonoglou1, Aja Huang1, Arthur Guez1,  
Thomas Hubert1, Lucas Baker1, Matthew Lai1, Adrian Bolton1, Yutian Chen1, Timothy Lillicrap1, Fan Hui1, Laurent Sifre1, 
George van den Driessche1, Thore Graepel1 & Demis Hassabis1

Much progress towards artificial intelligence has been made using 
supervised learning systems that are trained to replicate the decisions 
of human experts1–4 . However, expert data sets are often expensive, 
unreliable or simply unavailable. Even when reliable data sets are 
available, they may impose a ceiling on the performance of systems 
trained in this manner5. By contrast, reinforcement learning systems 
are trained from their own experience, in principle allowing them to 
exceed human capabilities, and to operate in domains where human 
expertise is lacking. Recently, there has been rapid progress towards this 
goal, using deep neural networks trained by reinforcement learning. 
These systems have outperformed humans in computer games, such 
as Atari6,7  and 3D virtual environments8–10. However, the most chal-
lenging domains in terms of human intellect—such as the game of Go, 
widely viewed as a grand challenge for artificial intelligence11—require 
a precise and sophisticated lookahead in vast search spaces. Fully gene-
ral methods have not previously achieved human-level performance 
in these domains.

AlphaGo was the first program to achieve superhuman performance 
in Go. The published version12, which we refer to as AlphaGo Fan, 
defeated the European champion Fan Hui in October 2015. AlphaGo 
Fan used two deep neural networks: a policy network that outputs 
move probabilities and a value network that outputs a position eval-
uation. The policy network was trained initially by supervised learn-
ing to accurately predict human expert moves, and was subsequently 
refined by policy-gradient reinforcement learning. The value network 
was trained to predict the winner of games played by the policy net-
work against itself. Once trained, these networks were combined with 
a Monte Carlo tree search (MCTS)13–15 to provide a lookahead search, 
using the policy network to narrow down the search to high-probability  
moves, and using the value network (in conjunction with Monte Carlo 
rollouts using a fast rollout policy) to evaluate positions in the tree. A 
subsequent version, which we refer to as AlphaGo Lee, used a similar 
approach (see Methods), and defeated Lee Sedol, the winner of 18 inter-
national titles, in March 2016.

Our program, AlphaGo Zero, differs from AlphaGo Fan and 
AlphaGo Lee12 in several important aspects. First and foremost, it is 

trained solely by self-play reinforcement learning, starting from ran-
dom play, without any supervision or use of human data. Second, it 
uses only the black and white stones from the board as input features. 
Third, it uses a single neural network, rather than separate policy and 
value networks. Finally, it uses a simpler tree search that relies upon 
this single neural network to evaluate positions and sample moves, 
without performing any Monte Carlo rollouts. To achieve these results, 
we introduce a new reinforcement learning algorithm that incorporates 
lookahead search inside the training loop, resulting in rapid improve-
ment and precise and stable learning. Further technical differences in 
the search algorithm, training procedure and network architecture are 
described in Methods.

Reinforcement learning in AlphaGo Zero
Our new method uses a deep neural network fθ with parameters θ. 
This neural network takes as an input the raw board representation s 
of the position and its history, and outputs both move probabilities and 
a value, (p, v) =  fθ(s). The vector of move probabilities p represents the 
probability of selecting each move a (including pass), pa =  Pr(a| s). The 
value v is a scalar evaluation, estimating the probability of the current 
player winning from position s. This neural network combines the roles 
of both policy network and value network12 into a single architecture. 
The neural network consists of many residual blocks4 of convolutional 
layers16,17  with batch normalization18 and rectifier nonlinearities19  (see 
Methods).

The neural network in AlphaGo Zero is trained from games of self-
play by a novel reinforcement learning algorithm. In each position s, 
an MCTS search is executed, guided by the neural network fθ. The 
MCTS search outputs probabilities π of playing each move. These 
search probabilities usually select much stronger moves than the raw 
move probabilities p of the neural network fθ(s); MCTS may therefore 
be viewed as a powerful policy improvement operator20,21. Self-play 
with search—using the improved MCTS-based policy to select each 
move, then using the game winner z as a sample of the value—may 
be viewed as a powerful policy evaluation operator. The main idea of 
our reinforcement learning algorithm is to use these search operators 

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in 
challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The 
tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were 
trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce 
an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game 
rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also 
the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality 
move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved 
superhuman performance, winning 100–0 against the previously published, champion-defeating AlphaGo.

1 DeepMind, 5 New Street Square, London EC4A 3TW, UK.
*These authors contributed equally to this work.
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either separate policy and value networks, as were used in AlphaGo 
Lee, or combined policy and value networks, as used in AlphaGo Zero; 
and using either the convolutional network architecture from AlphaGo 
Lee or the residual network architecture from AlphaGo Zero. Each  
network was trained to minimize the same loss function (equation (1)),  
using a fixed dataset of self-play games generated by AlphaGo Zero 
after 72  h of self-play training. Using a residual network was more 
accurate, achieved lower error and improved performance in AlphaGo 
by over 600 Elo. Combining policy and value together into a single  
network slightly reduced the move prediction accuracy, but reduced the 
value error and boosted playing performance in AlphaGo by around 

another 600 Elo. This is partly due to improved computational effi-
ciency, but more importantly the dual objective regularizes the network  
to a common representation that supports multiple use cases.

Knowledge learned by AlphaGo Zero
AlphaGo Zero discovered a remarkable level of Go knowledge dur-
ing its self-play training process. This included not only fundamental 
elements of human Go knowledge, but also non-standard strategies 
beyond the scope of traditional Go knowledge.

Figure 5 shows a timeline indicating when professional joseki  
(corner sequences) were discovered (Fig. 5a and Extended Data  
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Figure 5 | Go knowledge learned by AlphaGo Zero. a, Five human joseki 
(common corner sequences) discovered during AlphaGo Zero training. 
The associated timestamps indicate the first time each sequence occurred 
(taking account of rotation and reflection) during self-play training. 
Extended Data Figure 2  provides the frequency of occurence over training 
for each sequence. b, Five joseki favoured at different stages of self-play 
training. Each displayed corner sequence was played with the greatest 
frequency, among all corner sequences, during an iteration of self-play 
training. The timestamp of that iteration is indicated on the timeline. At 
10 h a weak corner move was preferred. At 47 h the 3–3 invasion was most 
frequently played. This joseki is also common in human professional play; 

however AlphaGo Zero later discovered and preferred a new variation. 
Extended Data Figure 3 provides the frequency of occurence over time 
for all five sequences and the new variation. c, The first 80 moves of three 
self-play games that were played at different stages of training, using 1,600 
simulations (around 0.4 s) per search. At 3 h, the game focuses greedily 
on capturing stones, much like a human beginner. At 19  h, the game 
exhibits the fundamentals of life-and-death, influence and territory. At 
70 h, the game is remarkably balanced, involving multiple battles and a 
complicated ko fight, eventually resolving into a half-point win for white. 
See Supplementary Information for the full games.
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Q-learning

• Agent in an environment described by a state s.

•  Agent takes actions a to move between states, s -> s’.

• Reward (positive or negative) r is given depending on state/action. 

• Agent learns policy, π(s,a), to navigate environment for optimal accumulated 

reward (return) by exploring.  

Difficult if big world with many states and actions


Use Artificial Neural Network to represent Q-function

Deep Q-learning

Q-function (action-value fcn) Q(s,a) quantifies expected return 
from taking action a in state s and subsequently following the optimal policy.

Explore to get reward and learn Q => optimal policy

Q(s, a) = r + �max
a0

Q(s0, a0)

γ<1 is discounting factor, better to get reward now than later

Mats Granath, MLQM, Nordita 2019



“grid-world” with fire (red) and cliffs on the side and treacherous wind

learn to move from green to yellow in as few steps

V (s) = max
a

Q(s, a)

optimal policy path

Mats Granath, MLQM, Nordita 2019

Small state-action space. Easy to store.

Q-learning example from undergraduate course at Gothenburg University



Deep Q-learning
Dynamic fire gives huge state space, (2100)


Different Q-function for each configuration of fire. 

Network can generalize state-actions 



Q-learning for the toric code with bit flip error

state is a syndrome

action is a bitflip=cardinal move of defect 
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Reward scheme is a challenge

reward, r=-1 per move (i.e. we aim to learn MWPM)

Natural to give reward after episode eliminating all errors: But weak signal.

Red error chain and  
blue error chain has same syndrome
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Figure 2: Bit-flip errors (red ’X’) and possible error correc-
tion bit-flips (blue ’X’). (a) Two neighboring errors and the
corresponding error chain (red line) and syndrome (red dots).
(b) Visualized in terms of the syndrome with error chain and
two possible correction chains (blue) as expressed explicitly in
(c) and (d). The error chain plus the correction chain in (d)
constitutes a non-trivial loop and a logical bit-flip operation
(as in Figure 1d), thus a failed error correction, in contrast
to the trivial loop in (c).

citations does not have to be considered explicitly as
errors act equivalently on all states that belong to the
same stabilizer sector.

A crucial aspect of quantum error correction is that
the actual bit-flip errors cannot be measured without
collapsing the state into a partial basis and destroying
the qubit. What can be measured without destroying
the logical qubit are the stabilizers, i.e. for bit-flip
error the parity of the plaquette operators. The com-
plete set of incorrect (≠1) plaquettes makes up the
syndrome of the state. The complete set of bit-flip er-
rors will produce a unique syndrome as the end-points
of strings of bit-flip errors. The converse however is
not true, which is what makes the task challenging.
In order to do the error correction we need to sug-
gest a number of physical bits that should be flipped
in order to achieve the pair-wise annihilation of the
defects of the syndrome. Consider a single pair of de-
fects which have been created by a particular chain
of errors. (See Figure 2.) The error correction needs
to suggest a correction string connecting the two de-
fects. If this is done properly the correction string and
the error string form a trivial loop, thus returning the
qubit to the original state. If instead the correction
string and the error string together make up a non-
trivial loop that winds the torus we have eliminated
the error syndrome but changed the state of qubit
(corresponding to a logical bit-flip), thus failed the
task of correcting the error.

For the uncorrelated noise model it can be shown,
by mapping to the random bond Ising model, that for
d æ Œ there is a critical threshold pc ¥ 0.11 below
which the most probable correction chains to comple-
ment the error chain will with certainty form trivial
loops, while for p > pc non-trivial loops occur with
finite probability.[23] For a finite system, the sharp
transition is replaced by a cross-over, as seen in Fig-
ure 6, where for increasing d the fraction of successful
error correction evolves progressively towards 1 for
p < pc, and to 1/4 (thus completely unpredictable)
for p > pc.

For the uncorrelated noise model on the torus the
most likely set of error chains between pairs of defects
which is consistent with a given syndrome would be
one that corresponds to the smallest number of to-
tal bit flips, i.e. the shortest total error chain length.
Thus, a close to optimal algorithm for error correc-
tion for this system is the Minimum Weight Perfect
Matching (MWPM) algorithm[27]. (This algorithm
is also near optimal for the problem with syndrome
errors as long as it is still uncorrelated noise[23, 28].)
The MWPM algorithm for the perfect syndrome cor-
responds to reducing a fully connected graph, with an
even number of nodes and with edges specified by the
inter-node distances, to the set of pairs of nodes that
minimize the total edge length. This algorithm can
be implemented e�ciently[46] and we will use this as
the benchmark of our RL results. In fact, as we will
see, the RL algorithm that we formulate amounts to
solving the MWPM problem. In this sense the work
presented in this paper is to show the viability of the
RL approach to this problem with the aim for future
generalizations to other problems where MWPM is
sub-optimal, such as for depolarizing noise or more
general error models.

2.2 Q-learning
Reinforcement learning is a method to solve the prob-
lem of finding an optimal policy of an agent acting
in a system where the actions of the agent causes
transitions between states of the system.[4] The pol-
icy fi(s, a) of an agent describes (probabilistically per-
haps) the action a to be taken by the agent when the
system is in state s. In our case the state will corre-
spond to a syndrome, and an action to moving a defect
one step. The optimal policy is the one that gives the
agent maximal return (cumulative discounted reward)
over the course of its interaction with the system. Re-
ward rt+1 is given when the system transitions from
state st æ st+1 such that the return starting at time
t is given by Rt = rt+1 + “rt+2 + “2rt+3 + · · · . Here
“ Æ 1 is the discounting factor that quantifies how we
want to value immediate versus subsequent reward.
As will be discussed in more detail, in the work pre-
sented in this paper a constant reward r = ≠1 will be
given for each step taken, so that in practice the opti-
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Figure 2: Bit-flip errors (red ’X’) and possible error correc-
tion bit-flips (blue ’X’). (a) Two neighboring errors and the
corresponding error chain (red line) and syndrome (red dots).
(b) Visualized in terms of the syndrome with error chain and
two possible correction chains (blue) as expressed explicitly in
(c) and (d). The error chain plus the correction chain in (d)
constitutes a non-trivial loop and a logical bit-flip operation
(as in Figure 1d), thus a failed error correction, in contrast
to the trivial loop in (c).

citations does not have to be considered explicitly as
errors act equivalently on all states that belong to the
same stabilizer sector.

A crucial aspect of quantum error correction is that
the actual bit-flip errors cannot be measured without
collapsing the state into a partial basis and destroying
the qubit. What can be measured without destroying
the logical qubit are the stabilizers, i.e. for bit-flip
error the parity of the plaquette operators. The com-
plete set of incorrect (≠1) plaquettes makes up the
syndrome of the state. The complete set of bit-flip er-
rors will produce a unique syndrome as the end-points
of strings of bit-flip errors. The converse however is
not true, which is what makes the task challenging.
In order to do the error correction we need to sug-
gest a number of physical bits that should be flipped
in order to achieve the pair-wise annihilation of the
defects of the syndrome. Consider a single pair of de-
fects which have been created by a particular chain
of errors. (See Figure 2.) The error correction needs
to suggest a correction string connecting the two de-
fects. If this is done properly the correction string and
the error string form a trivial loop, thus returning the
qubit to the original state. If instead the correction
string and the error string together make up a non-
trivial loop that winds the torus we have eliminated
the error syndrome but changed the state of qubit
(corresponding to a logical bit-flip), thus failed the
task of correcting the error.

For the uncorrelated noise model it can be shown,
by mapping to the random bond Ising model, that for
d æ Œ there is a critical threshold pc ¥ 0.11 below
which the most probable correction chains to comple-
ment the error chain will with certainty form trivial
loops, while for p > pc non-trivial loops occur with
finite probability.[23] For a finite system, the sharp
transition is replaced by a cross-over, as seen in Fig-
ure 6, where for increasing d the fraction of successful
error correction evolves progressively towards 1 for
p < pc, and to 1/4 (thus completely unpredictable)
for p > pc.

For the uncorrelated noise model on the torus the
most likely set of error chains between pairs of defects
which is consistent with a given syndrome would be
one that corresponds to the smallest number of to-
tal bit flips, i.e. the shortest total error chain length.
Thus, a close to optimal algorithm for error correc-
tion for this system is the Minimum Weight Perfect
Matching (MWPM) algorithm[27]. (This algorithm
is also near optimal for the problem with syndrome
errors as long as it is still uncorrelated noise[23, 28].)
The MWPM algorithm for the perfect syndrome cor-
responds to reducing a fully connected graph, with an
even number of nodes and with edges specified by the
inter-node distances, to the set of pairs of nodes that
minimize the total edge length. This algorithm can
be implemented e�ciently[46] and we will use this as
the benchmark of our RL results. In fact, as we will
see, the RL algorithm that we formulate amounts to
solving the MWPM problem. In this sense the work
presented in this paper is to show the viability of the
RL approach to this problem with the aim for future
generalizations to other problems where MWPM is
sub-optimal, such as for depolarizing noise or more
general error models.

2.2 Q-learning
Reinforcement learning is a method to solve the prob-
lem of finding an optimal policy of an agent acting
in a system where the actions of the agent causes
transitions between states of the system.[4] The pol-
icy fi(s, a) of an agent describes (probabilistically per-
haps) the action a to be taken by the agent when the
system is in state s. In our case the state will corre-
spond to a syndrome, and an action to moving a defect
one step. The optimal policy is the one that gives the
agent maximal return (cumulative discounted reward)
over the course of its interaction with the system. Re-
ward rt+1 is given when the system transitions from
state st æ st+1 such that the return starting at time
t is given by Rt = rt+1 + “rt+2 + “2rt+3 + · · · . Here
“ Æ 1 is the discounting factor that quantifies how we
want to value immediate versus subsequent reward.
As will be discussed in more detail, in the work pre-
sented in this paper a constant reward r = ≠1 will be
given for each step taken, so that in practice the opti-
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Deep Q-network

Network gives Q-values for the 4 movements of the central defect.

Crucial simplification, fixed number (4) actions, and doesn’t have to learn about boundaries. 

Table 2: Network architecture d=7.
# Type Size # parameters
0 Input 7x7
1 Conv. 512 filters; 3x3 size;

2-2 stride 5 120
2 FC 256 neurons 1 179 904
3 FC 128 neurons 32 896
4 FC 64 neurons 8 256
5 FC 32 neurons 2 080
6 FC (out) 4 neurons 132

1 228 388

Figure 9: Early training convergence of the Q network agent.
Success rate Ps versus number of iterations. One iteration
corresponds to annihilating all the defects of a single syn-
drome. (The very early below 1/4 success rate is an artifact
of using a max count for the number of error correcting steps
for the validation.)

isolated error creates a defect pair and there are 2d2

physical qubits.
In Figure 9 we also provide an example of the ini-

tial convergence of the algorithm for lattice size d◊d,
with d = 3, 5, 7. Here, each iteration corresponds to
solving one syndrome and making the corresponding
number of mini-batch training sessions from the expe-
rience bu↵er, as explained in section 3.2. A constant
set of syndromes is used for the testing so that fluc-
tuations correspond to actual performance variations
of the agent.

In Table 3 we list the hyperparameters related to
the Q-learning and experience replay set-up, as well as
the neural network training algorithm used. The full
RL algorithm is coded in Python using Tensorflow and
Keras for the Q-network. A single desktop computer
was used, with training converging over a matter of
hours (for d = 3) to days (for d = 7).

Table 3: Hyperparameters
Parameter Value
discount rate “ 0.95
reward r -1/step; 0 at finish
exploration ‘ 0.1
max steps per syndrome 50
mini batch size, N 32
target network update rate 100
memory bu�er size 1 000 000
optimizer ’Adam’
learning rate 0.001
beta1 0.9
beta2 0.999
decay 0.0
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Significant reduction in number of parameters. 

Size of state space for d=7, and NS=20 defects (10% error)
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Training Q-network using supervised learning

Synchronize every n iterations

Create tuple
T = (P, a, r, O')

Memory buffer

Q network 
Q(θ)

Target network
Q(θT)

P a r

O'

Random sample
{𝑇𝑖}𝑖=1𝑁

Construct
targets 

SGD

Learning stage

ri O'i
Pi ai

Syndrome

Choose action

New syndrome

Acting stage

Challenging to to converge

• experience replay

• separate target and policy networks
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the problem is enforced by including all four rotated
versions of the same tuple.) The training target value
for the Q-network is given by

yi = ri + “ max
P ÕœOÕ

i;aÕ
Q(P Õ, aÕ, ◊T ) , (3)

where “ is the discount factor and where the more
slowly evolving target network parametrized by ◊T

is used to predict future cumulative award. After
this, gradient descent is used to minimize the dis-
crepancy between the targets of the sample and the
Q network predictions for it, upgrading the network
parameters schematically according to ≠Ò◊

q
i
(yi ≠

Q(Pi, ai, ◊))2 . A new training sequence is then
started, and with some specified rate, the weights of
the target network, ◊T , are synchronized with the Q
network ◊. A pseudocode description of the procedure
is presented in algorithm 1 and an illustration of the
di↵erent components and procedures of the training
algorithm and how they relate to each other is found
in Figure 5.

Algorithm 1 Training the reinforcement learning
agent decoder

1: while syndrome defects remain do

2: Get observation O from syndrome Û See
figure 4

3: Calculate Q(P, a, ◊) using Q-network for all
perspectives P œ O.

4: Choose which defect e to move with action a
using ‘-greedy policy

5: P Ω perspective of defect e
6: Perform action a on defect e
7: r Ω reward from taking action a on defect e
8: OÕ Ω observation corresponding to new syn-

drome
9: Store transition tuple T = (P, a, r, OÕ) in mem-

ory bu�er
10: Draw a random sample of transition tuples
11: for each transition tuple Ti in sample do

12: Construct targets yi using target network
◊T and reward ri according to Eqn. 3.

13: end for

14: Update Q-network parameters ◊
15: Every n iterations, synchronize the target net-

work with network, setting ◊T = ◊
16: end while

4 Result
Data sets with a fixed error rate of 10% were gen-
erated to train the agent to operate on a code of a
specified size. The syndromes in a data set is fed one
at a time to the agent, which operates on it until no
errors remain. The data sets also contain information
about the physical qubit configuration (the hidden
state) of the lattice, which (as discussed in section

Figure 6: Error correction success rate ps of the converged
agents versus bit-flip error rate p, for system size d = 3, 5, 7,
and compared to the corresponding results using MWPM
(lines). (The MWPM decoder for d = 30 is included as a
reference for the approach to large d.)

3) is used to check the success rate of the decoder.
This is compared to the performance of the MWPM
decoder on the same syndromes [46]. The operation of
the trained decoder is similar to the cellular automa-
ton decoders[33, 34] in the sense of providing step by
step actions based on the current state of the syn-
drome. This also means that it could be implemented
in parallel with the error generation process by con-
tinuously adapting to the introduction of new errors.

The proficiency of the well converged agents are
shown in figures 6 and 7 as compared to the MWPM
performance. Given our specified reward scheme,
which corresponds to using as few operations as pos-
sible, we achieve near optimal results with a perfor-
mance which is close to that of the MWPM decoder.
For small error rates pL æ 0 it is possible to de-
rive an exact expression for the MWPM fail rate pL

(see Appendix A and [25, 47]) by explicitly identifying
the dominant type of error string. We have checked
explicitly that our Q-network agent is equivalent to
MWPM for these error strings and thus gives the same
asymptotic performance.

For larger system size d = 9 we have only been
partially successful, with good performance for small
error rates, but sub-MWPM performance for larger
error rates. Given the exponential growth of the state
space this is perhaps not surprising, but by scaling
up the hardware and the corresponding size of the
manageable Q-network we anticipate that larger code
distances would be achievable within the present for-
malism.

As a demonstration of the operation of the trained
agent and the corresponding Q-network we present
in Figure 8 the action values Q(S, a) for two di↵er-
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Training target

Minibatch training using  
Memory buffer

Gain experience Learn using experience

ε-greedy



Results. Converged Q-network.
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Q network predictions for it, upgrading the network
parameters schematically according to ≠Ò◊

q
i
(yi ≠

Q(Pi, ai, ◊))2 . A new training sequence is then
started, and with some specified rate, the weights of
the target Q network are synchronized with the Q
network. A pseudocode description of the procedure
is presented in algorithm 1 and an illustration of the
di↵erent components and procedures of the training
algorithm and how they relate to each other is found
in Figure 5.

4 Result
Data sets with a fixed error rate of 10% were gener-
ated to train the agent to operate on a code of a spec-
ified size. The syndromes in a data set is fed one at a
time to the agent, which operates on it until no errors
remain. The data sets also contain information about
the physical qubit configuration (the hidden state) of
the lattice, which (as discussed in section 3) is used
to check the success rate of the decoder. This is com-
pared to the performance of the MWPM decoder on
the same syndromes [39].

The proficiency of the well converged agents are
shown in figures 6 and 7 as compared to the MWPM
performance. Given our specified reward scheme,
which corresponds to using as few operations as pos-
sible, we achieve near optimal results with a perfor-
mance which is close to that of the MWPM decoder.
For small error rates pL æ 0 it is possible to de-
rive an exact expression for the MWPM fail rate pL

(see Appendix A and [22, 40]) by explicitly identifying
the dominant type of error string. We have checked
explicitly that our Q-network agent is equivalent to
MWPM for these error strings and thus gives the same
asymptotic performance.

For larger system sizes d Ø 9 we were not success-
ful at converging to close to MWPM performance.
We expect that this can be resolved by using a larger
neural network and parallelizing the exploration, to
be explored in future work.

As a demonstration of the operation of the trained
agent and the corresponding Q-network we present
in Figure 8 the action values Q(S, a) for two di↵er-
ent syndromes. (As discussed previously, Q(S, a) =
{Q(P, a, ◊)}P œO, where O is the observation, or set
of perspectives, corresponding to the syndrome S.)
The size of the arrows are proportional to the dis-
counted return R of moving a defect one initial step
in the direction of the arrow and then following the
optimal policy. In Fig. 8a, the values are written out
explicitly. The best (equivalent) moves have a return
R = ≠3.57 which corresponds well to the correct value
R = ≠1 ≠ “ ≠ “2 ≠ “3 = ≠3.62 for following the op-
timal policy to annihilate the defects in four steps,
with reward r = ≠1 and discount rate “ = .95. Fig-
ure 8b shows a seemingly challenging syndrome where
the fact that the best move does not correspond to

Figure 6: Error correction success rate ps of the converged
agents versus bit-flip error rate p, for system size d = 3, 5, 7,
and compared to the corresponding results using MWPM
(lines). (The MWPM decoder for d = 30 is included as a
reference for the approach to large d.)

Figure 7: Error correction fail rate pL = 1 ≠ ps shown to
converge to the known asymptotic MWPM behavior (Ap-
pendix A) for small error rates p æ 0. The lines correspond
to pL ≥ p

x, with x = Ád/2Ë = 2, 3, 4 for d = 3, 5, 7 fitted to
the lowest p data point.
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Results

Logical success-rate, large error rates 
close to MWPM

bit flip error rate

Logical fail-rate, small error rates 
identical to MWPM
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A Small error rate
As discussed by Fowler et al.[22, 40] the likely oper-
ating regime of surface code is in the limit of small
error rate p π 1. In addition, in the limit p æ 0 we
can derive an exact expression for the rate of logical
failure under the assumption of MWPM error correc-
tion, thus providing a solid benchmark for our RL
algorithm. Such expressions were derived for the sur-
face code in [40] and here we derive the corresponding
expression for bit-flip errors in the toric code.

Consider first the case of code distance d with d œ
odd, which is what we have assumed in the present
work. (Using odd d gives an additional simplification
of the Q-learning set-up from the fact that any pla-
quette can be considered the center of the lattice.) As
a reminder, the error formulation we use is that ev-
ery physical qubit has a probability p of bit-flip error,
and probability 1 ≠ p of no error. (In contrast to [40]
we don’t consider ‡y errors, which would give rise to
both bit-flip and phase-flip errors.) For very low p,
we only need consider states with the minimal num-
ber of bit-flip errors that may cause a logical failure.
One can readily be convinced (from a few examples)
that such states are ones where a number Ád/2Ë (e.g.
Á7/2Ë = 4) of errors are placed along the path of the
shortest possible non-trivial (logical) loops. The lat-
ter are d sites long, and on the torus there are 2d
such loops. For such a state MWPM will always fail,
because it will provide a correction string which has
Âd/2Ê bit-flips rather than the Ád/2Ë flips needed to

make a successful error correction. The former correc-
tion string, together with the initial error string, will
sum to one of the non-trivial (shortest length) loops
and give rise to a logical bit-flip. The fail-rate pL, i.e.
the fraction of logical fails of all generated syndromes,
is thus to lowest order in p and for odd d given by

pL = 2d

3
d

Ád/2Ë

4
pÁd/2Ë . (4)

Here 2d is the number of shortest non-trivial loops,!
d

Ád/2Ë
"
is the number of ways of placing the errors on

such a loop, and pÁd/2Ë is the lowest order term in the
probability (pÁd/2Ë(1 ≠ p)2d

2≠Ád/2Ë) of any particular
state with Ád/2Ë errors.
Considering d even (for reference), the correspond-

ing minimal fail scenario has d/2 errors on a length
d loop. Here the MWPM has a 50% chance of con-
structing either a non-trivial or trivial loop, thus giv-
ing the asymptotic fail rate pL = d

!
d

d/2
"
pd/2.

B Network architecture and training
parameters
The reinforcement learning agent makes use of a deep
convolutional neural network to approximate the Q
values for the possible actions of each defect. The
network (see Fig. 3) consists of an input layer which
is d◊d matrix corresponding to a perspective (binary
input, 0 or 1, with 1 corresponding to a defect), and a
convolutional layer followed by several fully-connected
layers and an output layer consisting of four neurons,
representing each of the four possible actions. All lay-
ers have ReLU activation functions except the output
layer which has simple linear activation.

Table 1: Network architecture d=5. FC=Fully connected
# Type Size # parameters
0 Input 5x5
1 Conv. 512 filters; 3x3 size;

2-2 stride 5 120
2 FC 256 neurons 524 544
3 FC 128 neurons 32 896
4 FC 64 neurons 8 256
5 FC 32 neurons 2 080
6 FC (out) 4 neurons 132

573 028

The network architecture is summarized in Table
1 and 2. We also included explicitly a count of the
number of parameters (weights and biases) to em-
phasize the huge reduction compared to tabulating

the Q-function. The latter requires of the order
!

d
2

NS

"

entries, for Ns defects, where Ns will also vary as the
syndrome is reduced, with initially NS ≥ 4pd2 as each

10
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form for small p:



Bottom line

We do the “simplest” error correction problem for a topological code 
• Periodic boundary conditions 
• No measurement noise/perfect syndrome 
• only bit flip noise 

Still challenging for reinforcement learning: deep Q-networks needed 
Allows for easy benchmark 



Depolarizing noise, work in progress

MWPM Reinforcement trained solver 
reward=annihilation of complete syndrome + small intermediate reward  

No logical operation

The agent can use Y to take advantage of correlations 
between bit-flip and phase-flip errors 

Example syndrome

 logical phase-flip
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Figure 2: Structure of the deep Q-network. The input is
a perspective, Pi, constructed from the syndrome, Si. The
hidden layers consist of convolutional layers, followed by one
fully connected layer. The output is the action Q-value,
Q(Pi, ai; ◊), for each pauli operator respectively.

2.2 Training the neural network

The Q-network is trained using the Deep Q learn-
ing algorithm utilizing prioritized experience replay
[2, 3]. Experience replay saves every transition in a
memory bu↵er, during the experience replay phase
the agent randomly samples a mini batch of tran-
sitions and uses the mini batch to update the Q-
network. Instead of sampling the mini batch uni-
formly as is done with regular experience replay prior-
itized experience replay prioritizes importance when
sampling. This importance is measured with the ab-
solute value of the temporal di↵erence or TD-error,
|”j | = |rj +“ max(Qt(sj+1, a

Õ; ◊t))≠Q(sj , aj ; ◊)|. Val-
ues with higher TD-error are more likely to be sam-
pled leading to an increase in learning speed compared
to regular experience replay. Using non-uniformly
sampling introduces biases that need to be compen-
sated for.

A separate neural network, the target network, is
utilized when calculating targets used for updating
the Q-network. This increases the stability of the al-
gorithm when training, the target network is synchro-
nized with the Q-network on a set interval.

The training can be divided into two stages the ac-
tion stage and the learning stage, pseudo code of the
algorithm can be observed in algorithm ??. The train-
ing starts with a action stage. Given a random syn-
drome, the agent suggests an action ai, based on the
Q-values and all the given di↵erent perspectives, Pi.
An ‘-greedy policy is used and therefore, with prob-
ability (1 ≠ ‘) the agent suggests the action with the
highest Q-value, otherwise a random action is pro-
posed. The action is performed on a qubit and alters
the state of the environment. The agent receives a re-
ward, ri, and the syndrome for the next state, Si+1,
given action ai. The transition is stored as a tuple,
T = (Pi, ai, ri, Si+1, ti+1), whereas ti+1 is a boolean
containing the information whether St+1 is a terminal

state (the system is in one of the four ground states
and there are no defects left). The reward of the agent
is set to

ri =
I

100 if episode terminates at step i + 1
Ei ≠ Ei+1 otherwise,

where Ei represents the number of defects in the syn-
drome at step i. The agent will in each step try to
maximize the immediate reward, this will in some
cases lead to a preference for using ‡

y-operators as
this can eliminate two defects in one operation lead-
ing to a larger immediate reward.

Algorithm 1: Training the reinforcement learn-
ing agent decoder

1 while defects remain do
2 Get observation O consisting of perspectives

Pi.;
3 With probability ‘ select random action, ai.;
4 Otherwise select:

ai = argmaxa(Q(Pi, ai; ◊)P œO.;
5 Execute action, ai and observe reward ri and

syndrome Si+1.;
6 Store transition (Pi, ai, ri, Si+1, ti+1) in

replay memory.;
7 Sample random minibatch of transitions from

replay memory.;
8 If terminal state reached set yi = ri, otherwise

set yi = ri + “ maxaÕ Q(Oi+1, a
Õ; ◊t).;

9 Perform gradient descent step on
(yi ≠ Q(Pi, ai; ◊))2 with respect to the
network parameter ◊.;

10 Every C steps synchronize the target network
with the policy network, ◊t = ◊.;

11 end

After the action stage the agent continues with the
learning stage. For that we utilize SGD and the tu-
ples stored in the replay memory. A minibatch of N

transitions, {T = (Pi, ai, ri, Si+1, t)}N

i=1, is sampled
from the replay memory with replacement. The train-
ing target value for the policy Q-network is given by:
yi = ri if terminal state is reached at step i + 1 and
yi = ri + “ maxaÕ Q(Oi+1, a

Õ; ◊t) otherwise. Where
“ represents the discount factor and the target net-
work is used to predict the future cumulative reward.
It is worth mentioning that the replay memory only
stores the syndrome, Si+1, therefore it is necessary
to generate the observations, Oi+1 and select, given
the di↵erent perspectives, the action maximizing the
cumulative reward...

2

Q-network

Q-values of X,Y, or Z action 
on marked qubit.

Syndrome from perspective  
of one qubit

Two channels, plaquette  
and vertex errors



Preliminary performance of RL solver trained on depolarizing noise

Outperforms MWPM

Mats Granath, MLQM, Nordita 2019

Depolarizing noise Bit flip noise

3 Results

Figure 3: Depolarizing noise model (full problem). The error
correction success rate, ps, of the converged agents versus
the error probability p, for system sizes d = 5, 7, 9, com-
pared to the corresponding results using the MWPM algo-
rithm. The RL-based algorithm outperforms the MWPM-
based algorithm. MENTION DECODER THRESHOLD?
ADD PLOT WITH ADDITIONAL P VALUES

Figure 4: Uncorrelated noise problem (only x errors). The
error correction success rate, ps, of the converged agents
versus the error probability p, for system sizes d = 5, 7, 9,
compared to the corresponding results using the MWPM al-
gorithm. The RL-based algorithm performs similar to the
MWPM-based algorithm. MENTION DECODER THRESH-
OLD? ADD PLOT WITH ADDITIONAL P VALUES

Table 1: Comparison of theoretical and experimental fail rate,
pL, considering the RL

theoretical experimental
d = 5 1.51e-3 1.45e-3
d = 7 2.12e-5 2.07e-5
d = 9 2.50e-7 4.30e-7

A Small error rate

It is possible to derive a theoretical expression of the asymptotic failure rate for low error probabilities. Here
we derive the probability considering a low error probability where error chains of length Á d

2 Ë are dominating
the failed syndromes. We assume the error probability for ‡

x, ‡
y and ‡

z to be equally likely, thus px,y,z = p

3 ,
where p is the probability of an error. The probability for a logical qubit change for low error probabilities,
considering our RL based approach, (pLRL) is given by

pLRL = pxxx + pzzz + pyxx + pyzz + pxzx + pzxz. (1)

With pxxx and pzzz being the probability of having three ‡
x and ‡

z-errors respectively. pyxx and pyzz being
the probability of having one ‡

y-error and otherwise ‡
x or ‡

z-errors (analog for pxzx + pzxz). The probability
of three errors of the same type is

pxxx = pzzz = 2d ·
3

d

Á d

2 Ë

4
·
1

p

3

2Á d
2 Ë

. (2)

The probability of having one ‡
y-error together with either two ‡

x or ‡
z-errors takes the form of

pyxx = pyzz = 1
22d ·

9
d

2

:
·
3

d

Á d

2 Ë ≠ 1

4
·
12p

3

2Á d
2 Ë≠1

. (3)

A similar expression holds for pxzx + pzxz.

pxzx = pzxz = 1
22d ·

9
d

2

:
·
3

d

Á d

2 Ë ≠ 1

4
·
12p

3

2Á d
2 Ë≠1

. (4)

3

d=9 not fully converged!



Deep Q-networks

---------------------------------------------------------------- 
        Layer (type)               Output Shape         Param # 
==============================================
================== 
            Conv2d-1            [-1, 128, 5, 5]           2,432 
            Conv2d-2            [-1, 128, 5, 5]         147,584 
            Conv2d-3            [-1, 120, 5, 5]         138,360 
            Conv2d-4            [-1, 111, 5, 5]         119,991 
            Conv2d-5            [-1, 104, 5, 5]         104,000 
            Conv2d-6            [-1, 103, 5, 5]          96,511 
            Conv2d-7             [-1, 90, 5, 5]          83,520 
            Conv2d-8             [-1, 80, 5, 5]          64,880 
            Conv2d-9             [-1, 73, 5, 5]          52,633 
           Conv2d-10             [-1, 71, 5, 5]          46,718 
           Conv2d-11             [-1, 64, 3, 3]          40,960 
           Linear-12                    [-1, 3]           1,731 
==============================================
================== 
Total params: 899,320

---------------------------------------------------------------- 
        Layer (type)               Output Shape         Param # 
================================================================ 
            Conv2d-1            [-1, 200, 7, 7]           3,800 
            Conv2d-2            [-1, 190, 7, 7]         342,190 
            Conv2d-3            [-1, 189, 7, 7]         323,379 
            Conv2d-4            [-1, 160, 7, 7]         272,320 
            Conv2d-5            [-1, 150, 7, 7]         216,150 
            Conv2d-6            [-1, 132, 7, 7]         178,332 
            Conv2d-7            [-1, 128, 7, 7]         152,192 
            Conv2d-8            [-1, 120, 7, 7]         138,360 
            Conv2d-9            [-1, 111, 7, 7]         119,991 
           Conv2d-10            [-1, 104, 7, 7]         104,000 
           Conv2d-11            [-1, 103, 7, 7]          96,511 
           Conv2d-12             [-1, 90, 7, 7]          83,520 
           Conv2d-13             [-1, 80, 7, 7]          64,880 
           Conv2d-14             [-1, 73, 7, 7]          52,633 
           Conv2d-15             [-1, 71, 7, 7]          46,718 
           Conv2d-16             [-1, 64, 5, 5]          40,960 
           Linear-17                    [-1, 3]           4,803 
================================================================ 
Total params: 2,240,739

distance 5 code
distance 7 code

trained on desktop GPU for 5 hours 
(using PyTorch) trained on desktop GPU for 12 hours

Mats Granath, MLQM, Nordita 2019



Conclusions

Deep Q-learning works well for error correction on toric code.  
Can match or even outperform MWPM (for moderate code distance) 

But, does require quite deep Q-networks 

Periodic boundaries important for our approach.  

Philip Andreasson, Joel Johansson, Simon Liljestrand, Mats Granath, arXiv:1811.12338, accepted to Quantum

Mattias Eliasson, David Fitzek, MG, in progress

Future challenges: 

• Larger code distances 
• Improve reward scheme, use actual success or failure of error correction 
• Include syndrome measurement error. 

• More realistic surface code with boundaries. (Tougher due to lack of translational invariance)

https://arxiv.org/search/quant-ph?searchtype=author&query=Andreasson%2C+P
https://arxiv.org/search/quant-ph?searchtype=author&query=Johansson%2C+J
https://arxiv.org/search/quant-ph?searchtype=author&query=Liljestrand%2C+S

