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e Toric code/Quantum error correction

* Reinforcement learning/Q learning/Deep Q learning
* Toric code with bit-flip error only

* Toric code with depolarizing noise
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Quantum error correction and topological codes

Fault tolerant quantum computation requires error correction
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Error correcting codes starting to be built, but still far off technologically. + + |
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State preservation by repetitive error detection in a
superconducting quantum circuit
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The toric code
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“Physical” qubit

Josephson junction, nuclear spin, quantum dot, ...
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Bit flip

Phase flip
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Commuting Plaquette and Vertex stabilizers (parity checks)

2d< physical qubits, 2d2-2 independent stabilizers
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Ground state
act with two vertex op:

consider:

Al @ 3)
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plaquette operator
ground state

still a plaquette
ground state

act with vertex op:

GS is symmetric superposition
of all trivial loops:

2)
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highly entangled

still a plaguette
ground state
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Ground state degeneracy
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Non-trivial loops (encircling torus) X+, Xo C
are not products of vertex operators.
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Four ground states/The logical qubit

{1GSp), X1|GSp), X2|GSp), XoX1|GSp)}
Topologically protected qubit

Distinguished by =1 eigenvalues of - and

Non-trivial loops=Logical bit-flip operators
Requires at least d physical bit-flip errors
code distance d

Corresponding to 2(d2-1) independent stabilizers on 2d? physical qubits.
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EX.

Error correction

consider bit-flip errors

The syndrome (defects/bad plaquettes), given by quantum non-demolition measurement

two neighbouring bit flip errors,
two defects
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failed error correction
non-trivial loop

() ()
d/UUUO}
/

Same syndrome given by blue bit flip strings.
Need to learn the statistics of errors.

Standard algorithm to suggest error correcting strings:
Minimum Weight Perfect Matching (MWPM)/Blossom

J. Edmunds, 1965

Find shortest total correction string. (Which is the most likely)
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Uncorrelated

(1-p)2 no error
p(1-p) X
p2 Y=XZ

e p(1-p) £

Bit- and phase-flip errors
(i.e. plaguette and vertex errors).
are independent. Corrected separately.

MWPM is (near) optimal

Look at this first

Error models

Depolarizing

e (1-p) no error

° p/3 X
e p/3 Y=XZ
. p/3 Z

Plagquette and vertex errors are correlated.

MWPM suboptimal
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Minimum Weight Perfect Matching Low-p fail rate for bit-flip errors

For p -> 0 we only need to consider error chains with minimal number

of errors that can give failed error correction

Consider d=5:
Two errors is always Three errors in a row always
corrected successfully gives failed error correction

3

2

MWPM asymptotic (lowest order in p) fail rate is:

e

Three errors not in a row always
gives successful correction

3

3

:

R
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Threshold value for logical recovery rate versus error rate

Map to random bond Ising model
Phase transition for large d
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For this problem MWPM is
almost optimal
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Bit-flip efror rate p

Threshold for Minimum Weight Perfect Matching decoder
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Many decoder algorithms suggested (non-exhaustive listing)

PHYSICAL REVIEW A 89, 022326 (2014)

A renormalization group decoding algorithm for
topological quantum codes

Efficient Markov chain Monte Carlo algorithm for the surface code

Adrian Hutter, James R. Wootton, and Daniel Loss

Guillaume Duclos-Cianci and David Poulin

Cellular-automaton decoders for

Efficient algorithms for maximum likelihood decoding in the surface tOPOIOgical quantum memories

code
Michael Herold , Earl T Campbell, Jens Eisert & Michael J Kastoryano

Sergey Bravyi, Martin Suchara, and Alexander Vargo

Phys. Rev. A 90, 032326 — Published 25 September 2014 npj Quantum Information 1, Article number: 15010 (2015)  Download Citation %

Neural Network Decoders for Large-Distance 2D Toric Codes Machine learning based decoders:

Xiaotong Ni
QuTech, Delft University of Technology, P.O.Box 5046, 2600 GA Delft, The Netherlands.” MaChine—learning—aSSiSted Correction Of Correlated

(Dated: September 19, 2018) _ _ _
qubit errors in a topological code
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PRL 119, 030501 (2017) PHYSICAL REVIEW LETTERS 21 JULY 2017

P. Baireuther!, T. E. O'Brien!, B. Tarasinski?, and C. W. J. Beenakker?

Neural Decoder for Topological Codes

Giacomo Torlai and Roger G. Melko . . .
Reinforcement Learning Decoders for Fault-Tolerant Quantum Computation

Ryan Sweke,! Markus S. Kesselring,! Evert P. L. van Nieuwenburg,? and Jens Eisert'-?

Optimizing Quantum Error Correction Codes with Reinforcement Learning 'Dahlem Center for Complex Quantum Systems, Freie Universitiit Berlin, 14195 Berlin, Germany
2 Institute for Quantum Information and Matter, Caltech, Pasadena, CA 91125, USA

Hendrik Poulsen Nautrup,''* Nicolas Delfosse,? Vedran Dunjko,®> Hans J. Briegel,>* and Nicolai Friis® ! Department of Mathematics and(gomgugr Slc)’e”fge’ 21[;) ’"leée) Universitdt Berlin, 14195 Berlin
ated: October 18,



The Bitter Lesson

Rich Sutton

March 13, 2019
The biggest lesson that can be read from 70 years of Al research is that general methods that

everage computation are ultimately the most effective, and by a large margin. The ultimate
reason for this is Moore's law, or rather its generalization of continued exponentially falling cost
per unit of computation. Most Al research has been conducted as if the computation available to
the agent were constant (in which case leveraging human knowledge would be one of the only
ways to improve performance) but, over a slightly longer time than a typical research project,
massively more computation inevitably becomes available. Seeking an improvement that makes

a difference in the shorter term, researchers seek to leverage their human knowledge of the
domain, but the only thing that matters in the long run is the leveraging of computation. These
two need not run counter to each other, but in practice they tend to. Time spent on one is time

In computer chess, the methods that defeated the world champion, Kasparov, in 1997, were
based on massive, deep search. At the time, this was looked upon with dismay by the majority
of computer-chess researchers who had pursued methods that leveraged human understanding
of the special structure of chess. When a simpler, search-based approach with special hardware

A similar pattern of research progress was seen in computer Go, only delayed by a further 20

Reinforcement
Learning

Message: High powered computations

years. Enormous initial efforts went into avoiding search by taking advantage of human are key to progress!

knowledge, or of the special features of the game, but all those efforts proved irrelevant, or
worse, once search was applied effectively at scale. Also important was the use of learning by
self play to learn a value function (as it was in many other games and even in chess, although
learning did not play a big role in the 1997 program that first beat a world champion). Learning




Deep reinforcement learning/Deep Q-learning

LETTER 2015 2017

doi:10.1038/naturel4236

Human-level control through deep reinforcement Mastering the game of Go without
learning human knowledge

Volodymyr Mnih'*, Koray Kavukcuoglul*, David Silver'*, Andrei A. Rusu’, Joel Veness', Marc G. Bellemare!, Alex Graves',
Martin Riedmiller', Andreas K. Fidjeland', Georg Ostrovski', Stig Petersen', Charles Beattie!, Amir Sadik’, Ioannis Antonoglou',
Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis'

David Silver'*, Julian Schrittwieser'*, Karen Simonyan'*, loannis Antonoglou', Aja Huang', Arthur Guez',
Thomas Hubert!, Lucas Baker!, Matthew Lai', Adrian Bolton!, Yutian Chen', Timothy Lillicrap', Fan Hui!, Laurent Sifre’,
George van den Driessche!, Thore Graepel' & Demis Hassabis'

Video Pinball |
Boxing 1
Breakout |

Star Gunner |
Robotank |
Atlantis |

Crazy Climber |
Gopher |

Demon Attack |
Name This Game |
Krull |

Assault |

Road Runner |
Kangaroo 1
James Bond |
Tennis |

Pong |

Space Invaders |
Beam Rider |
Tutankham |
Kung-Fu Master 1
Freeway |

Time Pilot |
Enduro |

Fishing Derby 1
Up and Down |
Ice Hockey 1
Q*bert |
H.E.R.O. |
Asterix |

Battle Zone |
Wizard of Wor |
Chopper Command |
Centipede |
Bank Heist |
River Raid |
Zaxxon |

Amidar |

Alien ]|

Venture |
Seaquest |
Double Dunk |
Bowling |

Ms. Pac-Man |
Asteroids |
Frostbite |
Gravitar |

Private Eye 1
Montezuma's Revenge |

AlphaStar 2019
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Q-learning

 Agent in an environment described by a state s.

 Agent takes actions a to move between states, s -> s’.

* Reward (positive or negative) r is given depending on state/action.

* Agent learns policy, ri(s,a), to navigate environment for optimal accumulated
reward (return) by exploring.

Q-function (action-value fcn) Q(s,a) quantifies expected return
from taking action a in state s and subsequently following the optimal policy.

Q(s,a) =r +ymaxQ(s',a’)

a

vy<1 is discounting factor, better to get reward now than later

Explore to get reward and learn Q => optimal policy

Difficult if big world with many states and actions

Use Artificial Neural Network to represent Q-function
Deep Q-learning

Mats Granath, MLQM, Nordita 2019



Q-Iearning example from undergraduate course at Gothenburg University

“grid-world” with fire (red) and cliffs on the side and treacherous wind
learn to move from green to yellow in as few steps
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Small state-action space. Easy to store. Vi(s) = Hax Q(s,a)
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Deep Q-learning

Dynamic fire gives huge state space, (2100)
Different Q-function for each configuration of fire.

Made by FlashBack

http://www.flashbackrecorder.com/
Watermark removed when fully licensed

Layer (type) Output Shape Param #
convad 1 (ConvaD)  (Nome, 8, 8, 32) 896
batch normalization 1 (Batch (None, 8, 8, 32) 128
conv2d 2 (Conv2D) (None, 6, 6, 32) 9248
flatten 1 (Flatten) (None, 1152) 0

dense 1 (Dense) (None, 4) 4612

Total params: 14,884
Trainable params: 14,820
Non-trainable params: 64

0 1 2 3 B 5 6 7 8 9

Network can generalize state-actions

Fire spread




Q-learning for the toric code with bit flip error

state is a syndrome
action is a bitflip=cardinal move of defect

State space is very big
number of ways of placing Ns defects on @2 sites:

d? 4
(N > ~ (23> ~ 1013 for d=7 and p=10%

Use deep Q-learning

Mats Granath, MLQM, Nordita 2019



Reward scheme is a challenge

Natural to give reward after episode eliminating all errors: But weak signal.

Red error chain and If red is suggested recovery chain.
blue error chain has same syndrome This can give both positive and negative reward

Instead, try to learn minimum number of correction steps:

reward, r=-1 per move (i.e. we aim to learn MWPM)



Observation

/

\

Efficient implementation of Q-network

Use translational and rotational symmetry
to center each defect.

gass

Perspective 1 Perspective 2 Perspective 3 Perspective 4
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Deep Q-network

Network gives Q-values for the 4 movements of the central defect.
Crucial simplification, fixed number (4) actions, and doesn’t have to learn about boundaries.

T [ Jele®
T 11T
&
1 —

Table 2: Network architecture d=7.

# | Type Size # parameters
0 | Input 7T N Significant reductign Ig numb_er of parameterf.
| Cony. 512 filters: 3x3 size: ize of state space for d=7, and Ns=20 defects (10% error)
2-2 stride 5 120
2 | FC 256 neurons 1179 904 5
3 | FC 128 neurons 32 896 d\ (49 13
4 | FC 64 neurons 8 256 N ~ 20) ~ 10
5 | FC 32 neurons 2 080 5
6 | FC (out) | 4 neurons 132
1 228 388
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Training Q-network using supervised learning

Challenging to to converge

o experience replay

* separate target and policy networks

: : Learn using experience
Gain experience

Learning stage

Acting stage

Random sample
Memory buffer (T,

Syndrome

¢ Par T Construct

e-greedy [|Choose action L» Create tuple targets
¢ = (P’:’ " O) Minibatch training using

New syndrome ; I é i Memory buffer
Training target
Vk —
nhetwor Target network Y, P
Q(6) aen yi =iy max QP a’,6r)

Synchronize every n iterations
Mats Granath, MLQM, Nordita 2019



Results. Converged Q-network.

Examples: Large arrow=Large Q-value for that action

Shortest total path (MWPM)

4-steps to elimination

ol 1] 14e

EEEEEME
HEEENEEE
HEECINE

EEEEED
EEEEED
EEEEENE

quantitatively correct Q-values
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Logical success-rate, large error rates
close to MWPM

& 067 —nwem (d=3) N Am
® RL (d=3) A '\.
- - MWPM (d=5) A
B RL (d=5) \ A
0.47 MWPM (d=7)
A RL (d=7) .
--—-MWPM (d=30)
0.2
0.05 0.07 0.09 0.11 0.13 0.15

p

bit flip error rate

Results

PL

Logical fail-rate, small error rates
identical to MWPM

Fits asymptotic
form for small p:



Bottom line

We do the “simplest” error correction problem for a topological code

o Periodic boundary conditions
. No measurement noise/perfect syndrome
. only bit flip noise

Still challenging for reinforcement learning: deep Q-networks needed
Allows for easy benchmark



Depolarizing noise, work in progress

Example syndrome

Reinforcement trained solver

MWPM e : .
reward=annihilation of complete syndrome + small intermediate reward
step_3

step_4 O J} O J} O (I) O J) O
IR 7 9 9 . 7.7.9
—O——O——O0——0——0— T T 17T
S & 4 45 & & O O O O 0O @
@) ® ® @ @) —O O O O O—
Q O 0O O O @ O O O O 0O @
—O——O0—+O0—1+0—+0— —O—1—O0—1+—O0—"1—0—1—0—
O O O QO O ©) O O O O O ®)
()_C(I)O(I)O(I)O(I)O_. —O O O O O—
O O

o——o—-1-o—-1-o-1-0
O I O I O I O I O
logical phase-flip No logical operation

The agent can use Y to take advantage of correlations
between bit-flip and phase-flip errors

Mattias Eliasson, David Fitzek, MG, in progress Mats Granath. MLQM. Nordita 2019



Q-network

Two channels, plaguette +
and vertex errors /é a
d 5
=0 \
SIS > O \\\
~ =0 ®
d — T o o o Q \(\“\4
| [ = - XX
3~ N
= O O
@ [
+
<+~ o
@
sle
Input Convolutional layers Action
Syndrome from perspective Q-values of X,Y, or Z action

of one qubit on marked qubit.



Ps

Preliminary performance of RL solver trained on depolarizing noise

Depolarizing noise

Bit flip noise

1.0 - &_*-=‘~A ® RL (d=5) 1.0 - &~ ® RL (d=5)
o4 , RL (d=7) & RL (d=7)
N
09 - \\ A RL (d=9) 09 _ A RL (d=9)
A —— MWPM (d=5) —— MWPM (d=5)
08 n \. - 08 N
\ MWPM (d=9) -=- MWPM (d=9)
0.7 - 0.7 A
_ Q
0.6 0.6 -
0.5 A 05
@
0.4 -
\\A 0.4 A
N\ ~
0.3 - A TS~
03 N \\\A
0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 ! ! ! ! ! ! !
0 0.06 0.08 0.10 0.12 0.14 0.16 0.18
P
Outperforms MWPM theoretical experimental
d=5  15le3 1.45e-3 d=9 not fully converged!
d = 2.12e-5 2.07e-5
d=9 2.90e-7 4.30e-7
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Deep Q-networks

_ distance 7 code
distance 5 code

Layer (type) Output Shape Param # ====L=iy=e:=(t=y=pf=)=======S:£fi2ﬁi===E§r=a=r2f=======================
T TTTTTTTTeTTTTTTTTTTTTTTTTTTTTTTTTTT Conv2d-1 -1,200,7, 7 3,800
=== =—=—==—=—=—====== | Conv2d-2 :_1, 190, 7, 7 342,190

Conv2d-1 -1,128, 5, 5] 2,432 Conv2d-3 1,189, 7, 7] 323,379
Conv2d-2 -1, 128, 5, 5] 147 584 Conv2d-4 1,160, 7, 7] 272.320
Conv2d-3 -1, 120, 5, 5] 138,360 Conv2d-5 1,150, 7, 7] 216,150
Conv2d-4 -1, 111, 5, 5] 119,991 Conv2d-6 1,132, 7, 7 178,332
Conv2d-5 -1, 104, 5, 5] 104,000 Conv2d-7 1,128,7, 7] 152,192
Conv2d-6 -1, 103, 5, 5] 96,511 Conv2d-8 -1,120,7, 7 138,360
Conv2d-7 -1, 90, 5, 5 83,520 Conv2d-9 -1, 111, 7, 7] 119,991
Conv2d-8 -1,80, 5,5 64,880 Conv2d-10 [-1, 104, 7, 7] 104,000
Conv2d-9 -1,73, 5, 9] 92,633 Conv2d-11 [-1, 103, 7, 7] 96,511
Conv2d-10 [-1,71, 5, 5] 46,718 Conv2d-12 -1, 90, 7, 7] 83,520
Conv2d-11 [-1, 64, 3, 3] 40,960 Conv2d-13 -1, 80,7, 7] 64,880
Linear-12 [-1, 3] 1,731 Conv2d-14 -1,73,7, 7 52,633
============================================== Conv2d-15 1,71, 7, 7] 46,718
—— s ——— COﬂV2d'16 :_1, 64, 5, 5 40,960
Total params: 899,320 Linear-17 [-1, 3] 4.803

trained on desktop GPU for 5 hours Total params: 2,240,739

(using PyTorch) trained on desktop GPU for 12 hours

Mats Granath, MLQM, Nordita 2019



Conclusions

Deep Q-learning works well for error correction on toric code.
Can match or even outperform MWPM (for moderate code distance)

But, does require quite deep Q-networks

Periodic boundaries important for our approach.

Future challenges:

Larger code distances

Improve reward scheme, use actual success or failure of error correction

Include syndrome measurement error.

More realistic surface code with boundaries. (Tougher due to lack of translational invariance)

Philip Andreasson, Joel Johansson, Simon Liljestrand, Mats Granath, arXiv:1811.12338, accepted to Quantum

Mattias Eliasson, David Fitzek, MG, in progress
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