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Crystal structure determines physical properties. 
Crystal structure determination was a major breakthrough.

Zincblende ZnS.
One of the first solved 
structures (1912-1913)

Structure Diffraction



Structure determines properties of materials

Example: graphite and diamond have the same chemical composition, and
their opposite properties are due to their different crystal structures. 

Functions of biomolecules 
are determined by 
their structure

DNA and its replication Structure of proteins
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Under pressure, Periodic Law breaks down. 

We understand the laws of nature only insofar as we understand their limitations

Periodic Law disappears at ultrahigh 
pressures (Al’tshuler, 1999)

At 100 GPa oxygen 
becomes a superconductor!



New chemistry of the elements under pressure

New superhard structure of boron
(Oganov et al., Nature, 2009)

High-pressure transparent 
allotrope of sodium 
(Ma & Oganov, Nature, 2009)



Units: 100 GPa = 1 Mbar = 
200x

Most matter of the Universe is under pressure

P.W. Bridgman
1946 Nobel laureate (Physics)



Briefly about big data



Big data have predictive power

We have: 
~300,000 experimental (& >500,000 theoretical) inorganic crystal structures. For 
many of them, we have some physical properties (and for many, we don’t).

Many studied syntheses of compounds. 

Many studied industrial production processes.

Big data analysis gives: 
Fast predictions

Predictions where the full calculation would be too complicated.

Predictions where there’s no theory.

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjvivyCvJvhAhXo0aYKHYQrBUMQjRx6BAgBEAU&url=http%3A%2F%2Ftheconversation.com%2Fthe-periodic-table-is-150-but-it-could-have-looked-very-different-106899&psig=AOvVaw28lIO9As7mAfBsWDRGW55f&ust=1553540617609284


Predicting complex properties: hardness
[Chen et al., 2011] and fracture toughness [Niu & Oganov, 2019]



Mendeleev number (Pettifor, 1984). Prediction of stability, 
structure, and properties of materials

Mendeleev numbers of the elements

Enthalpies of formation of compounds



Example: search for new ternary nitrides (Sun, 2019)

916 systems
246 contain stable nitrides
In 127 of them nitrides were not experimentally known



Machine learning can be used for accelerating 
simulations without loss of accuracy

Phase diagram of uranium obtained with machine learning
(Kruglov & Oganov, submitted)



Data mining gives quick-n-reasonable 
answers, but beware!

Davies & Oganov (2018): 4 interesting 
semiconductors, and for each data mining 
gave a wrong structure:
-for Sn5S4Cl2 by 24.7 meV/atom, 
-for Sn4SF6 by 5.1 meV/atom, 
-for Cd4SF6 by 0.2 meV/atom, 
-for Cd5S4Cl2 by 33.3 meV/atom.



Crystal Structure Prediction:
Impossible is Possible

-Crystal structures and stable stoichiometries can be predicted
-New tool to explore matter at extreme conditions & discover novel materials
-Evolutionary crystal structure prediction, Maxwell’s convex hull construction



(from http://nobelprize.org)

Until recently, experiment was 
the only source of crystal structures

- Crystal structure prediction is an NP-hard problem.
Intractable? 



Introduction(s) to crystal structure prediction

2011 2018

Faraday Discussions (2018) Nature Reviews Materials (2019)



…Kepler’s, Kekule’s and Barlow’s “predictions” 
we will rather call strikes of intuition

Kepler’s (1611) and modern models of the structure of ice

Kekule’s vision of the 
structure of benzene (1857)

Barlow’s (1897) and Bragg’s (1913) 
models of the structure of NaCl



The USPEX project
(Universal Structure Predictor: Evolutionary Xtallography)

http://uspex-team.org

•Combination of evolutionary algorithm and quantum-mechanical calculations.
•>5000 users.

•Solves «intractable» problem of structure prediction
-3D, 2D, 1D, 0D –systems,
-prediction of phase transition mechanisms.

• Interfaced with: VASP, Quantum Espresso, CASTEP,
FHI-aims, ABINIT, Siesta, Gaussian, ORCA, ATK, 
DFTB, MOPAC,  GULP,  LAMMPS, Tinker, DMACRYS

[Oganov A.R., Glass C.W., J.Chem.Phys. 124, 244704 (2006)]

W. Kohn

Energy landscape of Au8Pd

J. P. Perdew

http://uspex-team.org/


New methodological development: 
topological structure generator (Bushlanov, Blatov, Oganov, 2019)

Old 
USPEX

On-the-fly 
adaptation

Adaptation 
+topology

<#structures> 1307 1069 368
Success rate 100% 100% 100%

Example of KN3: (a) topological structure, (c) random symmetric structure, 
(c) energy distribution of topological (TR) and random symmetric structures

Statistics (100 runs) of USPEX performance on MgAl2O4 (28 atoms/cell) at 100 GPa

Energy, eV
(a) (b) (c)

Speedup ~3 times

GPSO
CALYPSO

1443
86%

SABC
CALYPSO

611
100%



Handling complexity with machine 
learning: boron allotropes

(E.Podryabinkin, E. Tikhonov, A. Shapeev, 
A.R. Oganov, PRB, 2019)

• ML potential with active learning 
(Shapeev, 2018). 800 parameters. 

• MAE = 11 meV/atom. 
• Reproduced α-, β-, γ-, T52 phases of 

boron. 
• Predicted low-energy metastable cubic 

cI54 phase.
• Speedup by 100-10,000 times. 



Test: MgSiO3 at 120 GPa

120 GPa: post-perovskite is stable

[Oganov & Glass, J.Chem.Phys. 2006]



Properties of D” layer (2700-2890 km) were explained 
by MgSiO3 post-perovskite in 2004

D” – root of hot spots

MgSiO3 makes ~75 vol.% of lower 
mantle

Anomalies of D”:
seismic discontinuity,
anisotropy



Is there a post-post-perovskite?
Mg-Si-O 
(super)Earths



Do we really know what’s inside planets? “Forbidden” MgO2, 
Mg3O2, SiO3, AlO2 etc. are stable at planetary pressures

Structure of AlO2

Al-O system:

Stable aluminum “oxide peroxides”:
Al4O7 = Al4O5[O2], stable at 330-443 GPa
AlO2 = Al2O2[O2], stable at >332 GPa
(Liu, Oganov, Kresse, Sci. Rep. 2015)

Si-O phase diagram and structure of SiO
(Niu & Oganov, Sci. Rep. 2015)

Mg-O phase diagram and structure of MgO3
(Niu & Oganov, Sci. Rep. 2015; 
Zhu & Oganov, PCCP 2012)



Predicting Unusual Compounds
-”Forbidden” stoichiometries become stable: Na3Cl, etc.
-Unusual valence/oxidation states appear: Cl2-, Cs5+, etc. 
-He becomes chemically active.
-Unusual properties: e.g., room-temperature superconductivity. 

Bader analysis:
-Reasonable atomic charges (close to Pauling)



Thermodynamic stability in variable-composition systems

USPEX can automatically find all stable compounds 
in a multicomponent system. 

Stable structure must be below all the possible decomposition lines !!

3-component convex hull:
Mg-Si-O system at 500 GPa 
(Niu & Oganov, Sci. Rep. 2015)



Unexpected chemistry of sodium chloride(s) :
Na3Cl, Na2Cl, Na3Cl2, NaCl, NaCl3, NaCl7 are stable under pressure. Why? 
(Zhang, Oganov, Goncharov, Science, 2013). 

Stability fields of sodium chlorides

NaCl3: atomic and electronic structure,
and experimental XRD pattern

Na-Cl

[Zhang, Oganov, et al., Science (2013)]
[Saleh & Oganov, PCCP (2015)]

Chemical anomalies: 
-Divalent Cl in Na2Cl!
-Coexistence of metallic and ionic blocks in Na3Cl!
-Positively charged Cl in NaCl7!



Сs-F

[Zhu & Oganov, Sci. Rep. (2015)]

“Forbidden” compounds can be practically useful 

Phase diagram of the Cs-F - Miao (2013) and corrected (Zhu & ARO, 2014)

Structure of CsF5, at 1 atm

• Miao (2013): predicted (incorrectly) novel compounds using 
CALYPSO. Zhu & Oganov (2015) – new phase diagram using 
USPEX. 
• СsF2, CsF3, CsF5 are stable at 1 atm and can be used for 
fluorine storage. Decomposition temperatures ~250-400 K. US 
patent (2013). 
• At >40 GPa – Cs(V) in Fddd-CsF5. 



Helium chemistry? Yes! 
(Dong, Oganov, Goncharov, Nature Chemistry 2017)

• Helium is the 2nd most abundant element in the Universe (24 wt.%). 
• Helium: ionization potential = 24.39 eV (record!)

electron affinity = 0.08 eV
• No stable compounds are known at normal conditions. Under pressure: van der 

Waals compound NeHe2 (Loubeyre et al., 1993).

1. Na2He is stable at >120 GPa, at least up to 1000 GPa.
2. Stabilized by an acceptor of an electron pair  on the “2e” site. Na2HeO – stable 

already at 14 GPa. 

Na-He

  

   

  
  



Noble gases are not inert under pressure
(Liu et al., Nature Comm. 2018)

• Helium reacts with Na, Na2O, H2O, SiO2, MgF2, CaF2, …
• Noble gases can be retained in Earth’s mantle (and core?).



• Old record Tc=135 K (Schilling, 1993) is broken: theorists (T. Cui, 2014) 
predicted new compound H3S with Tc~200 K. 

• Confirmed by A. Drozdov et al. (Nature 525, 73 (2015)). 

Recent record of high-Tc superconductivity: 
203 Kelvin (Duan et al., Sci. Rep. 4, 6968 (2014))

H-S



Superconductivity is linked with Mendeleev’s Table
[Semenok & Oganov, JPCL, 2018]

Distribution of Tc for hydrides

LaH10: record Тс (260 К @ 190 GPa)
(Somayazulu et al., 2019).

Test of idea: Th and Ac hydrides 
have high-Tc superconductivity.

ThH10: Tc=241 K at 100 GPa
(Kvashnin & Oganov, 2018).



Predicting Stable Nanoclusters
-Only conditional stability. Magic clusters. Similar to atomic nuclei.
-Unusual stable compositions are typical. 
-Explanation of carcinogenicity of oxide dust? 



Mass spectrum of Pbn clusters 
(Poole & Owens, 2003)

Stability grows with cluster size. We define stability relative to neighboring 
compositions. Especially stable clusters have filled electronic and/or structural 
shells. 

– “magic” clusters

Stability of nanoparticles: conditional

Lennard-Jones clusters



Mass-spectrum of Pbn clusters 
(from Poole & Owens, 2003) – magic clusters.

Stability of clusters

Real system: Pb clusters Model system: Lennard-Jones clusters

Criterion of local stability (magic clusters):
For binary clusters (AmBn):
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Si-OMap of stability of Si-O clusters 
[Lepeshkin & Oganov, J. Phys. Chem. Lett. 2019]

Ridges of stability: SiO2, Si2O3
Islands of stability: e.g., Si4O18

Analogy with 
magic atomic nuclei

«Magic» nuclei: with filled proton or neutron 
shells (2, 8, 20, 28, 50, 82, 126 p or n)
(1s2/2p6/3d102s2/4f8/4f63p65g10/5g84d103s26h12)

Magic numbers of electrons = 2, 10, 18, 36, 54, 86, 118)



Si4O18

Si8O12Si8O16
Si5O6

Si8O17

Si4O6

Si10O12

Magic magnetic(!) clusters. Excess of O

Magic clusters. Non-magnetic

Unstable

Si-O



Unusual compositions of transition metal oxide clusters
[Yu & Oganov, Phys. Chem. Chem. Phys., 2018]

Do crystals grow from such particles?



Predicting Optimal Materials
-Superior thermoelectrics: possible!
-New superhard materials: WB5 etc. 

-Pareto optimization of properties & stability.
-Mendelevian search for exploring chemical space. 



Towards materials design: example of thermoelectrics



How to improve efficiency of thermoelectric devices? 

- efficiency

[Fan & Oganov (2018)]

“One shouldn’t work on semiconductors, that is a filthy mess; who knows whether any 
semiconductors exist”
-W. Pauli, letter to R. Peierls (1931)



Multiobjective (Pareto) optimization finds a new thermoelectric 
polymorph of Bi2Te3 

Predicted P63cm structure of Bi2Te3

Pareto optimization of ZT and 
stability in the Bi-Te system



Similar conclusions from data mining



We can simultaneously optimize composition, 
structure, stability and other properties for a 
given chemical system. 

Now, let’s predict the best material(s) 
among all possible chemical systems!



Mendelevian Search – breakthrough method for discovering best 
materials among all possible compounds

[Allahyari & Oganov, 2018]

• 118 elements
• 7021 binary systems
• 273937 ternaries
• In each system - ∞ possible structures



Mendeleev Number – a way to arrange elements 
and compounds by properties

[Pettifor, 1984; Allahyari & Oganov, 2018]

Pettifor’s construction Comparison with 
Pettifor’s numbers

Grouping of hardness by (a) sequential number, 
(b) Pettifor’s Mendeleev number, (c) our Mendeleev number



Mendelevian search for the hardest possible material:
diamond and lonsdaleite are found!

1st generation 5th generation 10th generation



“Treasure map” of superhard materials
[Kvashnin, Allahyari, Oganov, 2019]



New material WB5

WB5: new supermaterial 
[Kvashnin & Oganov, J. Phys. Chem. Lett., 2018]

Tungsten carbide WC - standard
Synthesized by 
V. Filonenko



Advanced algorithms predict new supermaterials
and help us understand nature

New unusual compounds 
& almost room-T superconductivity

New superhard materialsPower and limitations of 
machine learning



Limitations/challenges of structure prediction methods

Complex metallic alloys: e.g., Samson phase, β-Mg2Al3: cF1168
(M. Feuerbacher et al., Z. Kristallogr. 222, 259 (2007)).

Non-collinear magnets: e.g., α-Mn
(D. Hobbs, J. Hafner, D. Spisak, 
PRB 68, 014407 (2003).

Large proteins: are they 
thermodynamically controlled?



The team. Where great minds do NOT think alike

А. GoncharovQ. Zhu X. Dong V.А. Blatov


	Слайд номер 1
	Слайд номер 2
	Structure determines properties of materials
	Слайд номер 4
	New chemistry of the elements under pressure
	Слайд номер 6
	Слайд номер 7
	Слайд номер 8
	Слайд номер 9
	Слайд номер 10
	Слайд номер 11
	Слайд номер 12
	Слайд номер 13
	Crystal Structure Prediction:�Impossible is Possible
	Слайд номер 15
	Слайд номер 16
	Слайд номер 17
	The USPEX project�(Universal Structure Predictor: Evolutionary Xtallography)
	Слайд номер 19
	Handling complexity with machine learning: boron allotropes��(E.Podryabinkin, E. Tikhonov, A. Shapeev, A.R. Oganov, PRB, 2019)
	Test: MgSiO3 at 120 GPa
	Слайд номер 22
	Is there a post-post-perovskite?
	Do we really know what’s inside planets? “Forbidden” MgO2, Mg3O2, SiO3, AlO2 etc. are stable at planetary pressures
	Predicting Unusual Compounds
	Слайд номер 26
	Unexpected chemistry of sodium chloride(s) :
	Слайд номер 28
	Helium chemistry? Yes! �(Dong, Oganov, Goncharov, Nature Chemistry 2017)
	Noble gases are not inert under pressure�(Liu et al., Nature Comm. 2018)
	Слайд номер 31
	Слайд номер 32
	Predicting Stable Nanoclusters
	Слайд номер 34
	Слайд номер 35
	Слайд номер 36
	Слайд номер 37
	Слайд номер 38
	Predicting Optimal Materials
	Слайд номер 40
	Слайд номер 41
	Слайд номер 42
	Слайд номер 43
	Слайд номер 44
	Слайд номер 45
	Mendeleev Number – a way to arrange elements �and compounds by properties �[Pettifor, 1984; Allahyari & Oganov, 2018]
	Слайд номер 47
	Слайд номер 48
	Слайд номер 49
	Слайд номер 50
	Слайд номер 51
	The team. Where great minds do NOT think alike

