@ Nordita

Effective model estimation for magnetic materials by machine learning

NIMS / U. Tokyo Ryo Tamura

Research Center Initiativ

2019/8/27

Data-driven materials science in Japan Fast screening, property prediction, improvement of analysis by data-driven techniques

Superconductor

STAM 19, 909 (2018)

Semiconductor

Nat. Com. 7, 11962 (2016)

Interface

Phonon conductivity

PRX 7, 021024 (2017)

Radiator

Ge

Smell sensor

Cent. Sci. 5, 319 (2019) Sci. Rep. 7, 3661 (2017)

Li-ion conductivity

SAXS

Cent. Sci. 4, 1126 (2018) Appl. Mater. Inter. 11, 11545 (2019) BCSJ 92, 1100 (2019) Sci. Rep. 9, 1526 (2019)

Design of molecule by Al

By combination of ChemTS and Gaussian, we can design synthesizable, novel functional molecules.

Machine Learning

Target wavelength	200 nm	300 nm	400 nm	500 nm	600 nm
Simulator-Qualified	34	26	13	12	1
Synthesized	2	2	1	1	0
Functional	1	2	1	1	0

ACS Central Science 4, 1126 (2018).

Data driven nano mechanical sensing

- By combination of MSS, ML and systematic material design, we can perform quantitative odor analysis.
 - ML results Development of useful materials

 $C18(1)-NH_{2}(4)-STNPs$

88, 044601 (2019).

Phase diagram construction by Al

By using active learning (uncertainty sampling), we can efficiently construct phase diagram.

Low

pility	Why GitHub? Enterprise Explore Marketplace Pricing Search 7 Sign in Sign u Issues 0 Pull requests 0 Projects 0 In Insights				
Prob	T 13 commits	₽ 1 branch	© 0 releases	L contributor	
	Branch: master - New pull request			Find file Clone or download -	
	Ktera1988 Update README.md			Latest commit b2dbd18 on 16 Dec 2018	
	PD_examples		Add files via upload	2 months ago	
	🖬 snapshot		Add files via upload	2 months ago	
	PDC_sampler.py		Add files via upload	a month ago	
inty score	PDC_sampler_version0.ipynb		Add files via upload	2 months ago	
,	README.md		Update README.md	a month ago	
	ata.csv		Add files via upload	a month ago	
Fign	https://gi	thub.c	om/tsu	dalab/PDC	

Physical Review Materials 3, 033802 (2019).

Metamaterial design by QA

By using quantum annealing and factorization machine, we can efficiently design metamaterial.

Quantum annealing(QA) Better structure QUBO parameters Factorization machine(FM) $Q_{ij} = \sum \left[v_{ik} v_{jk} \right]$ Training data

FMQA

Effective model estimation method

Plausible effective model for experimental results

Existence of observation noise in $m^{ex}(H)$ Assumption : $P(\varepsilon) \propto \exp\left(-\frac{\varepsilon^2}{2\sigma^2}\right)$ observation noise

$$m^{\mathrm{ex}}(H) = m(H, \mathbf{x}) + \varepsilon$$

Conditional probability of m^{ex}

 $P(m^{\mathrm{ex}}(H)|m(H,\mathbf{x})) \propto \exp$

$$F(H)$$
 given $m(H, \mathbf{x})$
 $p\left(-\frac{1}{2\sigma^2}(m^{\text{ex}}(H) - m(H, \mathbf{x}))^2\right)$

Conditional probability of $m^{ex}(H)$ given x $P(m^{\text{ex}}(H)|\mathbf{x}) \propto \int dm(H, \mathbf{x}) P(m^{\text{ex}}(H)|m(H, \mathbf{x})) P(m(H, \mathbf{x})|\mathbf{x})$ $\propto \exp\left[-\frac{1}{2\sigma^2} \left(m^{\text{ex}}(H) - \left|\frac{1}{N|\mathbf{s}|}\sum_{i=1}^N \langle \mathbf{s}_i \rangle_{H, \mathbf{x}}\right|\right)^2\right]$

 $m^{\text{ex}}(H)$ where $P(m^{\text{ex}}(H)|\mathbf{x})$ is maximize.

Observed magnetization

x where $P(\mathbf{x}|m^{ex}(H))$ is maximize.

Plausible model parameters

Summary of effective model estimation

We search the maximizer of the posterior distribution when the measured physical quantities are inputted.

$$x_{1,\dots,L}) = \exp[-E(\mathbf{x})]$$

$$(y_l) - y^{\operatorname{cal}}(g_l, \mathbf{x}) \Big]^2 - \log P(\mathbf{x})$$

ItCalculatedPrioralphysical quantitiesdistributionsby effective model

R. Tamura and K. Hukushima, Phys. Rev. B 95, 064407 (2017).

Prior distribution

L1 reguralization

 $P(\mathbf{x}) \propto \exp\left(-\lambda |\mathbf{x}|\right)$

Model parameters with large contributions can be selected based on the feature selection.

Depending on the situation, it is necessary to select a proper prior distribution.

L2 reguralization $P(\mathbf{x}) \propto \exp\left(-\lambda \|\mathbf{x}\|^2\right)$

Absolute values of model parameters can be suppressed.

Determination of hyperparameter

Cross validation

Plausible value is determined at the point where prediction error is minimized.

 $\boldsymbol{\lambda}$

useful for L1 regularization (overfitting occurs)

Elbow method

Plausible value is determined by the large change point in energy function.

useful for L2 regularization (overfitting does not occur)

 $\boldsymbol{\Lambda}$

Demonstration: Theoretical model

Target classical Heisenberg model with biquadratic interactions (magnetization plateau is appeared)

$$\mathcal{H} = \sum_{\langle i,j \rangle} J_{ij} \begin{bmatrix} \mathbf{s}_i \cdot \mathbf{s}_j - b_{ij} (\mathbf{s}_i \cdot \mathbf{s}_j)^2 \end{bmatrix} - H \sum_i s_i^z \qquad b_{ij} = b J_{ij}$$
$$\mathbf{s}_i : \text{Classical Heisenberg spin (S=1/2)}$$

model parameters : $\mathbf{x} = \{J_1, J_2, J_3, J_4, J_5, J_6, J_7, b\}$

We tried: L1 regularization cross validation

Estimation results

$$=4, J_3=5, J_4=6, b=0.1$$
 + Gaussian $J_5=J_6=J_7=0$ + noise

Estimated results and prediction

λ		Estimated	Correct
_	J_1	1.074	1.000
	J_{2}	3.850	4.000

L1 regularization & cross validation is effectively worked for model selection.

02 0.024	J_5	0.011	0.000
	J_6	-0.051	0.000
	J_7	0.002	0.000
	b	0.102	0.100

Time consuming problem Energy function in effective model estimation

 $E(\mathbf{x}) = \frac{1}{2\sigma^2} \sum_{l=1}^{-} \left[y^{\text{ex}}(t) \right]$

Values of model parameters is calculated. are changed.

> We want to reduce the number of calculations of thermal averages.

$$[g_l) - y^{\operatorname{cal}}(g_l, \mathbf{x})]^2 - \log P(\mathbf{x})$$

We should calculate the thermal average of physical quantity by Monte Carlo, exact diagonalization, DMRG, mean-field, etc.

Searching procedure of maximizer of posterior distribution

Time consuming problem will be overcome by using Bayesian optimization.

Plausible effective model for experimental results

Summary

Summary

Machine learning is very useful as support tool in materials science.

Organic

ACS Cent. Sci. 4, 1126 (2018)

Magnet

IJQC. 117, 33 (2017) JPSJ. 88, 044601 (2019)

Parameter 1

Phys. Rev. Mat. 3, 033802 (2019)

arXiv: 1902.06573 (2019)

