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Scope of the Workshop 
Over the past decades we have witnessed an enormous increase of computational power and a rapid                
development of experimental techniques. Both developments, together with the great advancements of            
data storage capacities have initiated the application of methods taken from computer and data science               
into the research of functional quantum materials and quantum many-body physics. 

This conference aims to bring together internationally leading scientists working on the intersection             
between condensed matter physics and computer science. It is intended to exchange knowledge about              
the current state-of-the-art machine learning tools applied to condensed matter physics. The scope             
covers topics such as quantum simulation and quantum computation, quantum materials and materials             
design, exploring the chemical space, machine learning for magnetism, as well as methods and              
algorithms. 
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Timetable 

Monday, Aug 26th  
 

09:30 - 09:45 Introduction (A. Balatsky) 

 Quantum Simulations and Quantum Computation (chair A. Balatsky) 

09:45 - 10:45 Jacob Biamonte - Quantum Machine Learning for Quantum Simulation 

10:45 - 11:00 Coffee break 

11:00 - 12:00 Mats Granath - Quantum error correction for the toric code using deep 
reinforcement learning 

12:00 - 14:00 Lunch break 

 Quantum Materials and Materials Design (chair J. Bardarson) 

14:00 - 15:00 Matthias Geilhufe - Organic Quantum Matter and the Organic Materials Database 

15:00 - 16:00 Valentin Stanev - Machine learning modeling of superconducting critical 
temperature 

16:00 - 16:30 Coffee break 

16:30 - 17:00 Oleksandr Balabanov - Unsupervised detection of topological quantum state 
equivalences 

17:00 - 17:30 Ali Mazhar - Deriving descriptors from fundamental physical models for targeted 
material property prediction using machine learning 

18:30 - 21:00 Reception at Alba Nova 

 

Tuesday, Aug 27th  
 

 Exploring the chemical space (chair B. Olsthoorn) 

09:00 - 10:00 Alexandre Tkachenko - Towards Universal Machine-Learning/Physics Model of 
Molecular Properties in Chemical Space 



10:00 - 10:15 Coffee break 

10:15 - 11:15 Anatole von Lilienfeld - Navigating chemical space with quantum machine learning 

11:15 - 12:15 Artem Oganov - Artificial intelligence methods for discovering novel materials and 
exotic compounds  

12:00 - 14:00 Lunch break 

 Magnetism (chair M. Geilhufe) 

14:00 - 15:00 Rio Tamura - Effective model estimation for magnetic materials by machine 
learning 

15:00 - 16:00 Johan Hellsvik - spin wave excitations of magnetic metal organic materials 

16:00 - 16:30 Coffee break 

16:30 - 17:30 Johan Mentink - New horizons for the fastest, densest and least dissipative 
brain-inspired computing 

 

Wednesday, Aug 28th  
 

 Methods and algorithms (chair M. Geilhufe) 

09:00 - 10:00 Kristof Schütt - SchNet - an interpretable atomistic neural network 

10:00 - 10:15 Coffee break 

10:15 - 11:15 Tess Smidt - Euclidean Neural Networks for Emulating Ab Initio Calculations and 
Generating Atomic Geometries 

11:15 - 11:45 Caroline Brembilla - Phylogenetic operads in machine learning 

11:45 - 12:15 Joana Olivia - Microsoft’s Azure ML and AI modeling portfolio 

12:00 - 14:00 Lunch break 

 Outline  (chair J. Bardarson) 

14:00 - 15:00 Alexander Balatsky - Dirac Materials and Informatics 

15:00 - 15:30 Yi Luo - Determining spectrum-structure relation with machine learning techniques 

15:30 - 16:30 Coffee and round table discussion 



 

 

Abstracts 
 

Quantum Machine Learning for Quantum Simulation 
Jacob Biamonte, Skolkovo Institute of Science and Technology 

“Simulators” are an emerging class of computational devices which aim to augment traditional             
computer programming by accelerating certain subroutines. Many computer algorithms—particularly in          
machine learning—were inspired by, or are closely related to, naturally occurring physical processes.             
The simulator replaces computer code which mimics a physical process with a physical process itself.               
Typically physical processes of interest include those which minimize a systems energy (which can be               
utilized to solve optimization problems) as well as making multiple measurements of a system which can                
simulate Gibbs sampling. In our effort to merge quantum simulators with machine learning, we tell a                
story that is as pessimistic as it is optimistic. We recall several recent new discoveries that help shed                  
light on what noisy quantum processors will be cable of, including some insights towards what classes of                 
problems they can and cannot solve. 

 

 

 

Quantum error correction for the toric code using deep reinforcement learning 
Mats Granath, University of Gothenburg 

Surface codes that provide topological protection for logical qubits are believed to be one of the most                 
promising avenues towards robust quantum computing. An important ingredient in the successful            
operation of a surface code qubit is the decoder protocol for quantum error correction, based on the                 
incomplete diagnostics (the syndrome) of the noisy state of the system. In this talk we present work on                  
Kiteav’s toric code, where we develop an AI-based decoding agent that uses deep reinforcement              
learning. The trained agent suggests error correcting Pauli operations on physical qubits based on the               
action-value Q-function, which is represented by a deep convolutional neural network. For moderate             
code lengths we find that the AI-agent outperforms the standard decoding algorithm, showing the              
promise of using machine learning for this task.  

P. Andreasson et al. arXiv:1811.12338  2018; 

M. Eliasson et al, in preparation 

 



 

Organic Quantum Matter and the Organic Materials Database 
R. Matthias Geilhufe, Nordita 

Quantum matter represents a class of materials where quantum phenomena are dominant over a wide               
range of energy and length scales, such as superconductors, topological semimetals, or spin- and              
charge-quantum liquids. Due to their complex crystal structure and strong correlation effects organics             
have remained a niche in quantum materials research, despite a few prominent exceptions. Recent              
developments in materials informatics have opened the path towards novel tools for organic quantum              
materials discovery which I will discuss throughout the talk. My talk presents the development of the                
organic materials database - OMDB, a freely accessible electronic and magnetic structure database for              
previously synthesized 3-dimensional organic crystals, available at https://omdb.diracmaterials.org [1]. I          
will show recent progress in using machine learning algorithms on highly complex organic structures [2]               
and outline their consequences in future quantum materials discovery. 

[1] S. S. Borysov, R. M. Geilhufe, & A. V. Balatsky, PloS one 12.2, e0171501 (2017) 

[2] B. Olsthoorn, R. M. Geilhufe, S. S. Borysov, A. V. Balatsky, Adv. Quant. Tech., 1900023, (2019) 

 

 

 

Machine learning modeling of superconducting critical temperature 

Valentin Stanev, University of Maryland 

Machine learning has emerged as a powerful new research tool that can be used to answer scientific                 
questions in unconventional ways. In this talk I will discuss how it can help us address one of the most                    
challenging problems in the study of quantum matter – finding connection between superconductivity –              
in particular superconducting critical temperature Tc – and chemical/structural properties of materials. I             
will present several recently developed machine learning methods for modeling the Tc of more than               
12,000 known superconductors available via the SuperCon database. These models use coarse-grained            
predictors based only on the chemical composition of the materials. They demonstrate strong predictive              
power, with learned predictors offering insights into the mechanisms behind superconductivity in            
different families. The models can be combined into a single pipeline and employed to search for                
potential new superconductors. Searching the entire Inorganic Crystallographic Structure Database led           
to the identification of 35 compounds as candidate high-Tc materials. I will also discuss how machine                
learning can be used to guide and accelerate the experimental process in a specific superconducting               
family. 

 

 

 



Unsupervised detection of topological quantum state equivalences 
Oleksandr Balabanov, University of Gothenburg 

I will present an unsupervised computational scheme for detecting topological quantum state            
equivalences and demonstrate it on simple examples in 1d. The idea is to apply the “learning by                 
confusion” protocol [Nat. Phys. 13, 435-439 (2017)] on datasets of topologically equivalent states             
produced using unbiased exploration. This exploration, inspired by data augmentation techniques for            
image recognition, is developed to efficiently survey the relevant topological equivalence classes,            
enabling one to create the datasets for the neural-network-based classification. The scheme will be              
explicitly illustrated on concrete examples in 1d where the topological state equivalences and             
distinctions will be correctly predicted without any prior knowledge of the topological invariants. [O.B.              
and M. Granath, in preparation] 

 

 

 

 

 

Deriving descriptors from fundamental physical models for targeted material 
property prediction using machine learning 

Ali Mazhar, Max-Planck-Institute for Microstructure Physics Halle 

As ML and AI technologies become more mature, their application to condensed matter physics              
problems becomes more tractable. However, it is important to identify what problems are the most               
beneficial to tackle as well as develop fundamental physical models which are able to be integrated into                 
ML models. In particular, prediction of material properties or novel materials with properties which lay               
in Pasteur's Quadrant are of great interest both from the perspective of fundamental physics as well as                 
technological application. Here we will discuss some of the desired directions of materials AI research,               
with a particular focus on the spin and anomalous hall effects for device electronics. We will explain the                  
physical model and subsequently derived major descriptor for predicting these properties and briefly             
discuss how this can be integrated into materials databases and materials AI. 

 

 

 

 

 



Towards Universal Machine-Learning/Physics Model of Molecular Properties in 
Chemical Space 

Alexandre Tkachenko, University of Luxembourg 

"Mindless" learning from data has led to paradigm shifts in a multitude of disciplines. Can machine                
learning enable similar breakthroughs in “understanding” (quantum) molecules and materials? Here,           
the two main challenges are: (1) the disproportionately large size of chemical space, even when only                
counting small organic drug-like candidates, (2) the complex nature of quantum interactions on different              
length and time scales. Aiming towards a unified machine learning (ML) model of quantum interactions,               
I will discuss the potential and challenges for using ML techniques in chemistry and physics. ML methods                 
can not only accurately estimate molecular properties of large datasets, but they can also lead to new                 
insights into chemical similarity, aromaticity, reactivity, and molecular dynamics [1]. However, to do so              
one needs to carefully unify spatial and temporal physical symmetries with purpose-designed ML             
methods [2,3]. While the potential of machine learning for revealing insights into complex             
quantum-chemical systems is high, many challenges remain. I will conclude my talk by discussing these               
challenges. 

[1] K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, and A. Tkatchenko, Quantum-chemical insights              
from deep tensor neural networks. Nature Commun. 8, 13890 (2017). 

[2] S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, and K.-R. Müller, Machine Learning                
of Accurate Energy-Conserving Molecular Force Fields. Science Adv. 3, 1603015 (2017). 

[3] S. Chmiela, H. E. Sauceda, K. R. Mueller, and A. Tkatchenko, Towards exact molecular dynamics                
simulations with machine-learned force fields. Nature Commun. 9, 3887 (2018). 

 

 

 

Navigating chemical space with quantum machine learning 
Anatole von Lilienfeld, University of Basel 

Many of the most relevant chemical properties of matter depend explicitly on atomistic and electronic               
details, rendering a first principles approach to chemistry mandatory. Alas, even when using             
high-performance computers, brute force high-throughput screening of compounds is beyond any           
capacity for all but the simplest systems and properties due to the combinatorial nature of chemical                
space, i.e. all compositional, constitutional, and conformational isomers. Consequently, efficient          
exploration algorithms need to exploit all implicit redundancies present in chemical space. I will discuss               
recently developed quantum machine learning based approaches for interpolating quantum mechanical           
observables in compositional and constitutional space. Numerical results from these models indicate            
controlled accuracy and favourable computational efficiency.  
 



Artificial intelligence methods for discovering novel materials and exotic 
compounds 

Artem R. Oganov, Skolkovo Institute of Science and Technology 

Until mid-2000s it was thought that crystal structures are fundamentally unpredictable. This has             

changed, and a special role in this was played by our evolutionary method/code USPEX              

(http://uspex-team.org), which now has over 5000 registered users worldwide. This method           

can be viewed as a type of artificial intelligence, and routinely allows one to predict stable                

crystal structures for a given chemical composition], and even to predict all stable compounds              

formed by given elements. I will discuss some of the most important recent results, including: 

1. Discovery of novel chemical phenomena at high pressure: transparent non-metallic          

allotrope of sodium, counterintuitive novel sodium chlorides, chemical reactivity of          

helium. 

2. Prediction of novel surface compounds, with unexpected similarities to high-pressure          

compounds. 

3. Prediction of new high-temperature superconducting polyhydrides, approaching       

room-temperature superconductivity. 

4. Discovery of novel superhard materials, which have the potential for wide industrial            

application.  

I will also mention some applications of another type of artificial intelligence: machine learning              

methods, including recent prediction of phase diagrams of metals (including both solid-solid            

transitions and melting). 

 

 

 

Effective model estimation for magnetic materials by machine learning 
Rio Tamura, University of Tokyo 

We developed a method for estimating the effective model of magnetic materials from a given physical                
quantity by the machine learning based on the Bayesian statistics. In the estimation method, plausible               
magnetic interactions that explain the given physical quantity are determined by maximizing the             
posterior distribution. The efficiency of the estimation method was tested by using synthetic             
magnetization curve data obtained by the classical Heisenberg model. Furthermore, the estimation            
results of real magnetic materials are shown and speeding up of the effective model estimation by the                 
Bayesian optimization is discussed in this talk. 

 

 

http://uspex-team.org/


Spin wave excitations of magnetic metalorganic materials 
Johan Hellsvik, Roberto Díaz Pérez, R. Matthias Geilhufe, Martin Månsson, and 

Alexander V. Balatsky, Nordita, KTH 

Materials databases, high throughput computing, and data mining has emerged as powerful tools for              
screening and rapid prototyping of functional materials. Nordita has taken a step into materials              
informatics and machine learning with the Organic Materials Database (OMDB) [1] which came online in               
2017. The OMDB is an electronic structure database for various organic and organometallic materials,              
freely accessible via a web interface at https://omdb.mathub.io/. The electronic band structures are             
calculated using density functional theory that is a standard tool in modern materials science. OMDB’s               
web interface allows users to search for materials with specified target properties using non-trivial              
queries about their electronic structure, including advanced tools for pattern recognition [2], chemical             
and physical properties search. The OMDB currently hosts more than 22,000 electronic band structures.              
For a data set of this size, it is possible to develop and train machine learning models to predict                   
materials properties, thus bypassing the ab initio calculations which are particularly demanding for large              
chemical unit cells and number of electrons, as is commonly the case for organic materials. Successful                
training of machine learning models for band gap prediction of organometallic materials has recently              
been reported in [3]. Materials with competing ground states and phases constitute a challenge for ab                
initio based modeling. A prominent example are magnetic materials. In a recent paper an important step                
forward is taken in the development of techniques for predictive modeling of the properties of magnetic                
solids [4]. The starting point is to consider magnetic materials within the OMDB. Using a ferromagnetic                
reference spin configuration, the magnetic Hamiltonians are calculated utilizing the infinitesimal           
rotation technique for calculation of Heisenberg exchange interactions. For these magnetic Hamiltonians            
quenching simulations down to zero temperature are performed in order to obtain the magnetic ground               
states. The magnetic excitation spectra are calculated by means of linear spin wave theory and atomistic                
spin dynamics simulations. The current dataset features collinear as well as noncollinear magnetic             
materials and has now been released on the OMDB. Representative results and the use of pattern                
matching algorithms to identify materials with desired properties are highlighted in [4]. 

[1] S. S. Borysov, R. M. Geilhufe, and A. V. Balatsky, PLOS ONE 12, e0171501 (2017). 

[2] S. S. Borysov, B. Olsthoorn, M. B. Gedik, R. M. Geilhufe, and A. V. Balatsky, npj Computational                  
Materials 4, 46 (2018). 

[3] B. Olsthoorn, R. M. Geilhufe, S. S. Borysov, and A. V. Balatsky, Advanced Quantum               
Technologies,1900023 (2019). 

[4] J. Hellsvik, R. Díaz Pérez, R. M. Geilhufe, M. Månsson, and A. V. Balatsky, arXiv preprint                 
arXiv:1907.01817 (2019). 

 

 

https://omdb.mathub.io/


New horizons for the fastest, densest and least dissipative brain-inspired 
computing 

Johan H. Mentink, Radboud University 

The explosive growth of digital data and its related energy consumption is pushing the need to develop                 
fundamentally new physical principles for faster, smaller and more energy-efficient control of data.             
Moreover, already today the energy-efficiency of processing technology is limiting their performance.            
Furthermore, brain-inspired computing schemes offer inherently more energy-efficient computing         
paradigms for tasks such as pattern recognition. Our research is inspired by the dream to exploit the                 
fastest and most energy-efficient quantum dynamics of magnetic materials to implement the most             
energy-efficient brain-inspired computing algorithms. As a specific example, we demonstrate          
experimentally how supervised learning can be achieved using ultrafast optical control of magnetization             
in technologically relevant Co/Pt thin films at room temperature [1]. Moreover, we present novel              
theoretical results showing the potential of the recently discovered neural quantum states to simulate              
the ultrafast dynamics of magnon pairs in Heisenberg antiferromagnets [2]. In addition, we demonstrate              
that exploring this dynamics inherently opens up the study of so far unexplored physical effects and we                 
show that correlations and therefore entanglement can be coherently manipulated on ultrashort time             
scales. Finally, we outline the potential of this dynamics for brain-inspired computing at THz frequencies               
and nanoscale dimensions, suggesting new horizons for brain-inspired computing that are not feasible             
within further downscaling of existing computing technology platforms. 

[1] A. Chakravarty, J.H. Mentink et al., Supervised learning of an opto-magnetic neural network with               
ultrashort laser pulses. Appl. Phys. Lett. 114, 192407 (2019). 

[2] G. Fabiani and J.H. Mentink, Investigating ultrafast quantum magnetism with machine learning.             
SciPost Physics 7, 004 (2019). 

 

 

SchNet - an interpretable atomistic neural network 
Kristof Schütt, Technical University Berlin 

Deep neural networks are emerging as a powerful tool in quantum chemistry and materials science,               
combining the benefits of electronic structure methods with excellent computational efficiency. Based            
on the SchNet architecture, we demonstrate that the modular nature of deep models can also be                
exploited to enhance their versatility and offer insights beyond the basic relations learned by the               
network. Going beyond the simple prediction of properties, we present the generative model G-SchNet,              
built on top of SchNet, which may be used to discover novel atomistic systems in equilibrium                
configuration. 

 



Euclidean Neural Networks* for Emulating Ab Initio Calculations and Generating 
Atomic Geometries 

Tess Smidt, Lawrence Berkeley National Laboratory 

Atomic systems (molecules, crystals, proteins, nanoclusters, etc.) are naturally represented by a set of              
coordinates in 3D space labeled by atom type. This is a challenging representation to use for neural                 
networks because the coordinates are sensitive to 3D rotations and translations and there is no               
canonical orientation or position for these systems. We present a general neural network architecture              
that naturally handles 3D geometry and operates on the scalar, vector, and tensor fields that               
characterize physical systems. Our networks are locally equivariant to 3D rotations and translations at              
every layer. In this talk, we describe how the network achieves these equivariances and demonstrate               
the capabilities of our network using simple tasks. We’ll also present examples of applying Euclidean               
networks to multiple applications in quantum chemistry and discuss techniques for using these             
networks to encode and decode geometry. 

* also called Tensor Field Networks and 3D Steerable CNNs 

 

 

Determining spectrum-structure relation with machine learning techniques 
Yi Luo, University of Science and Technology of China and The Royal Institute of 

Technology (KTH), Stockholm 

Spectroscopic techniques have been routinely applied to determine the geometric and electronic            
structures of complexes in different research fields. However, it is often difficult to extrapolate accurate               
structural information from the experimental spectra without theoretical simulations. Machine learning           
offers a powerful tool to significantly increase the efficiency and improve the predictability of the               
simulations. We have done some exercises recently to use machine learning to predict the structure               
from vibrational spectrum or vice versa. We have also proposed several useful descriptors to describe               
the relationship between the protein structure and two-dimensional ultraviolet (2DUV) spectroscopy           
[1]. 

[1] S. Ye, W. Hu, X. Li, J. Zhang, K. Zhong, G. Zhang, Y. Luo, S. Mukamel, and J. Jiang, PNAS, 2019, 116,                       
11612-11617 

 

  

 

 

 


