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...and what the electrons are doing.

...use quantum theory and 
supercomputers to determine...
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What a computational materials physicist does:
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Hypothesize

Inverse Design

Zooooom!

We want to use deep learning to speed up these calculations, hypothesize new structures, 
perform inverse design, and organize these relations.

Map
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We want to use deep learning to speed up these calculations, hypothesize new structures, 
perform inverse design, and organize these relations.

Map

What types of neural networks are best suited for these tasks?
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Neural networks are specially designed for different data types. 
Assumptions about the data type are built into how the network operates.

Vectors ⇨ Dense NN 2D images ⇨ Convolutional NN Text ⇨ Recurrent NN

Components are independent. The same features can be found 
anywhere in an image. Locality.

Sequential data. Next 
input/output depends on 
input/output that has come 
before.

What are our data types in materials physics? 
How do we build neural networks for these data types?

W x
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What assumptions do we want “built in” to our neural networks (for materials data)?

Atomic systems form geometric motifs that can 
appear at multiple locations and orientations.

The properties of physical systems transform 
predictably under rotation.

Two point masses with velocity and acceleration.

Same system, with rotated coordinates.
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What assumptions do we want “built in” to our neural networks (for materials data)?

Atomic systems form geometric motifs that can 
appear at multiple locations and orientations.

The properties of physical systems transform 
predictably under rotation.

Two point masses with velocity and acceleration.

Same system, with rotated coordinates.

Our data types are geometry and geometric tensors.
These data types assume Euclidean symmetry (3D translations, 3D rotations, and inversion).
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Space has Euclidean symmetry, E(3). Objects break that symmetry. 
The broken symmetry is a subgroup of E(3).
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Space has Euclidean symmetry, E(3). Objects break that symmetry. 
The broken symmetry is a subgroup of E(3).

O(3) Oh Pm-3m
(221)

SO(2) + 
mirrors

(C∞v)
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Properties of a system must be compatible with symmetry.
Which of these situations are symmetrically allowed / forbidden?
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Properties of a system must be compatible with symmetry.
Which of these situations are symmetrically allowed / forbidden?

m m

m m

m m

a.

b.

c.

✓

✗

✗

m 2m

m m
g



21

We build neural networks with Euclidean symmetry, E(3) and SE(3).

● What neural networks with Euclidean symmetry can do.

● How Euclidean Neural Networks work.

● Applications of Euclidean Neural Networks.



Trained on 3D Tetris shapes in one orientation, 
these network can perfectly identify these shapes in any orientation.
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Chiral
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Given a molecule and a rotated copy, 
the predicted forces are the same up to rotation.
(Predicted forces are equivariant to rotation.)
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To these networks, primitive unit cells, conventional unit cells, and supercells of  
the same crystal will produce the same output (assuming periodic boundary conditions).



25

We build neural networks with Euclidean symmetry, E(3) and SE(3).

● What neural networks with Euclidean symmetry can do.

● How Euclidean Neural Networks work.
○ Overview
○ Input to network
○ Network operations
○ Visualizing kernels
○ Interpreting input / output

● Applications of Euclidean Neural Networks.



We use points. Images of atomic systems are sparse and imprecise. 

vs.

We encode the symmetries of 3D Euclidean space (3D translation- and 3D rotation-equivariance).

Other  
atoms

Convolution 
center

We use continuous convolutions 
with atoms as convolution 
centers.
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K. T. Schütt et al, NIPS 30 (2017). 
(arXiv: 1706.08566)
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Translation equivariance

Rotation equivariance
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Translation equivariance
Convolutional neural 
network ✓

Rotation equivariance?

30



Translation equivariance
Convolutional neural 
network ✓

Rotation equivariance
Data augmentation
Radial functions 
Want a network that both 
preserves geometry and 
exploits symmetry.

31



32

Several groups converged on similar ideas around the same time.

Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
(arXiv:1802.08219)
Tess Smidt*, Nathaniel Thomas*, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley

Points, nonlinearity on norm of tensors

Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
(arXiv:1806.09231)
Risi Kondor, Zhen Lin, Shubhendu Trivedi

Only use tensor product as nonlinearity, no radial function

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
(arXiv:1807.02547)
Mario Geiger*, Maurice Weiler*, Max Welling, Wouter Boomsma, Taco Cohen

Efficient framework for voxels, gated nonlinearity

*denotes equal contribution
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Several groups converged on similar ideas around the same time.

Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
(arXiv:1802.08219)
Tess Smidt*, Nathaniel Thomas*, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley

Points, nonlinearity on norm of tensors

Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
(arXiv:1806.09231)
Risi Kondor, Zhen Lin, Shubhendu Trivedi

Only use tensor product as nonlinearity, no radial function

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
(arXiv:1807.02547)
Mario Geiger*, Maurice Weiler*, Max Welling, Wouter Boomsma, Taco Cohen

Efficient framework for voxels, gated nonlinearity

*denotes equal contribution

Tensor field networks + 3D steerable CNNs 
= Euclidean neural networks
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To be rotation-equivariant means that we can rotate our inputs 
OR rotate our outputs and we get the same answer.

Lx yD

Lx yD=
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The input to our network is geometry and features on that geometry.
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The input to our network is geometry and features on that geometry.
We categorize our features by how they transform under rotation.

Features have periodicity 2π/L 
where L is a positive integer.

Scalars

Vectors

3x3 Matrices

Frequency
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Other atoms

Convolution 
center

with no symmetry:  

with SO(3) symmetry:

Learned Parameters

The convolutional kernels are built from functions with period 2π/L
⇨ Spherical harmonics.



L = 0

m = -1

L = 1

m = 0 m = 1

L = 2

L = 3

m = 2 m = 3m = -2m = -3

Spherical harmonics angular portion of 
hydrogenic wavefunctions

basis functions for (2l + 1) 
dimensional irreducible 
representations of SO(3)

basis functions for signals 
on a sphere



Let g be a 3d 
rotation matrix.

a-1 +a0 +a1

=

D is the Wigner-D matrix. 
It has shape                                
and is a function of g.

Spherical harmonics of a given L transform together under rotation.

g

39

b-1 +b0 +b1

D
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Features and kernels are not simply scalars.
We use tensor products with Clebsch-Gordan coefficients to combine.

D. Griffiths, Introduction to quantum mechanics

Same math 
involved in the 
addition of 
angular 
momentum.



Examples of tensor product: How to combine a scalar and a vector? Easy!
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Angular Frequency



Examples of tensor product: How to combine two vectors? Many ways.

42

Dot 
product

Cross
product

Outer 
product

Angular Frequency
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Features and kernels are not simply scalars.
We use tensor products and Clebsch-Gordan coefficients to combine.
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Features and kernels are not simply scalars.
We use tensor products and Clebsch-Gordan coefficients to combine.

singlet

triplet
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Features and kernels are not simply scalars.
We use tensor products and Clebsch-Gordan coefficients to combine.

L=0 L=1 L=2



For L=1 ⇨ L=1, the filters will be a learned radially-dependent linear 
combinations of the L = 0, 1, and 2 spherical harmonics.

47

L=2L=0 L=1

+ +



For L=1 ⇨ L=1, the filters will be a learned radially-dependent linear 
combinations of the L = 0, 1, and 2 spherical harmonics.

48

L=2L=0 L=1

+ +
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We can interpret our outputs as numerical features or geometry.
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We can interpret our outputs as numerical features or geometry.
Example of L<6 coefficients interpreted as geometry for randomly initialized network 
applied to a tetrahedron with a center.
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We can interpret our outputs as numerical features or geometry.
Example of L<6 coefficients interpreted as geometry for randomly initialized network 
applied to a tetrahedron with a center.

We can generate point sets from using peaks of spherical harmonic signals!
Sets == permutation invariant. Difficult for neural networks.
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We build neural networks with Euclidean symmetry, E(3) and SE(3).

● What neural networks with Euclidean symmetry can do.

● How Euclidean Neural Networks work.

● Applications of Euclidean Neural Networks.



Applications: Predicting ab initio forces for molecular dynamics
Simon Batzner (MIT/Harvard) and Boris Kozinsky (Harvard)
Presented at APS March Meeting 2019

53

Direct prediction 
of forces rather 
than gradient of 
scalar energy.
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Force predictions for MD17 dataset
comparison to SchNet values in [1], Force MAE in kcal/(mol Angstrom)

Training Set: 
1,000 examples

Training Set: 
50,000 examples

[1] K. T. Schütt et al, Adv. in Neural Information Processing Systems 30 (2017). (arXiv: 1706.08566)

Direct prediction 
of forces rather 
than gradient of 
scalar energy.



Applications: Predicting molecular Hamiltonians with atom-centered basis sets

K. T. Schütt, M. Gastegger, 
A. Tkatchenko, K.-R. Müller, 
R. J. Maurer. 
arXiv:1906.10033 (2019)

Predict Hamiltonian 
matrix and get 
eigenvectors 
(wavefunctions) and 
eigenvalues (energies).
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Predict Hamiltonian 
matrix and get 
eigenvectors 
(wavefunctions) and 
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Applications: Predicting molecular Hamiltonians with atom-centered basis sets



Applications: Reconstructing 
atomic positions from 
coarse-grained geometries for 
molecular dynamics

W. Wang, R. Gómez-Bombarelli. arXiv:1812.02706 (revised 2019)



Applications: Reconstructing 
atomic positions from 
coarse-grained geometries for 
molecular dynamics

W. Wang, R. Gómez-Bombarelli. arXiv:1812.02706 (revised 2019)

Tetrahedral chain.Centers of a 
tetrahedral chain.

Predict using 
spherical harmonic 

signal

Test problem



Applications: Reconstructing 
atomic positions from 
coarse-grained geometries for 
molecular dynamics
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Applications: Creating an autoencoder for discrete geometry

Continuous
Latent Representation
(N dimensional vector)

Discrete geometry Discrete geometry

Reduce 
geometry to 
single point.

Create 
geometry from 
single point.
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Continuous
Latent Representation
(N dimensional vector)

Discrete geometry Discrete geometry

Reduce 
geometry to 
single point.

Create 
geometry from 
single point.

Atomic structures are hierarchical 
and can be constructed from 
geometric motifs. 

+ Encode geometry ✓
+ Encode hierarchy ?
+ Decode geometry ?
+ Decode hierarchy ?

(Need to do this in a recursive manner)

Applications: Creating an autoencoder for discrete geometry
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Convolve

Bloom
(Make copies and move)

Cluster 
(Symmetric KMeans)

Combine 
(CNN and

 Cluster Info)

Geometry

N
ew

 G
eom

etry 

*Edges are shown for visualization. May not be included. 

How to encode: Recursively convert geometry to a vector
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How to decode: Recursively convert a vector to geometry

Bloom with new features

Cluster 
(Merge duplicate points)

Combine 
(Bloom features and

 Cluster Info)

Geometry

N
ew

 G
eom

etry 

*Edges are shown for visualization. May not be included. 

1st

2nd



tensor field networks

Google Accelerated Science Team Stanford

Patrick 
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Steve 
Kearnes

Nate 
Thomas

Lusann 
Yang

Kai 
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Li
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atomic architects
summer 2019
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● Euclidean neural networks operate on points/voxels and have symmetries of E(3).
● Inputs to the network lower this symmetry to a subgroup of E(3).
● Symmetry of outputs are constrained to the symmetry of the inputs.
● The inputs and outputs of our network are geometry and geometric tensors. 
● Convolutional filters are built from spherical harmonics with a learned radial function.

Applications: Molecular dynamics, predicting Hamiltonians, coarse-graining, autoencoders...

We expect these networks to be generally useful for physics, chemistry, and geometry.
Reach out to me if you are interested and/or have any questions!

66

Tess Smidt
tsmidt@lbl.gov

se3cnn Code (PyTorch):
https://github.com/mariogeiger/se3cnn

Tensor Field Networks (arXiv:1802.08219)
3D Steerable CNNs (arXiv:1807.02547)

https://github.com/mariogeiger/se3cnn


Calling in backup (slides)!
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